Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 442:3fbcd11c2a35
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 04 Mar 2022 19:04:08 +0900 |
parents | 6b26db38367f |
children | 3681cac8d6a8 |
files | src/OrdUtil.agda src/filter.agda src/generic-filter.agda |
diffstat | 3 files changed, 16 insertions(+), 48 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OrdUtil.agda Tue Mar 01 15:33:05 2022 +0900 +++ b/src/OrdUtil.agda Fri Mar 04 19:04:08 2022 +0900 @@ -35,6 +35,12 @@ o<> {ox} {oy} lt tl | tri≈ ¬a b ¬c = ¬a tl o<> {ox} {oy} lt tl | tri> ¬a ¬b c = ¬a tl +¬≡o∅< : { ox : Ordinal } → ¬ (ox ≡ o∅ ) → o∅ o< ox +¬≡o∅< {ox} not with trio< o∅ ox +... | tri< a ¬b ¬c = a +... | tri≈ ¬a b ¬c = ⊥-elim ( not (sym b) ) +... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) + osuc-< : { x y : Ordinal } → y o< osuc x → x o< y → ⊥ osuc-< {x} {y} y<ox x<y with osuc-≡< y<ox osuc-< {x} {y} y<ox x<y | case1 refl = o<¬≡ refl x<y
--- a/src/filter.agda Tue Mar 01 15:33:05 2022 +0900 +++ b/src/filter.agda Fri Mar 04 19:04:08 2022 +0900 @@ -143,53 +143,8 @@ prime-ideal : {L : HOD} → Ideal L → ∀ {p q : HOD } → Set n prime-ideal {L} P {p} {q} = ideal P ∋ ( p ∩ q) → ( ideal P ∋ p ) ∨ ( ideal P ∋ q ) ----- --- --- Filter/Ideal without ZF --- L have to be a Latice --- - -record F-Filter {n : Level} (L : Set n) (PL : (L → Set n) → Set n) ( _⊆_ : L → L → Set n) (_∩_ : L → L → L ) : Set (suc n) where - field - filter : L → Set n - f⊆P : PL filter - filter1 : { p q : L } → PL (λ x → q ⊆ x ) → filter p → p ⊆ q → filter q - filter2 : { p q : L } → filter p → filter q → filter (p ∩ q) - -Filter-is-F : {L : HOD} → (f : Filter L ) → F-Filter HOD (λ p → (x : HOD) → p x → x ⊆ L ) _⊆_ _∩_ -Filter-is-F {L} f = record { - filter = λ x → Lift (suc n) ((filter f) ∋ x) - ; f⊆P = λ x f∋x → power→⊆ _ _ (incl ( f⊆PL f ) (lower f∋x )) - ; filter1 = λ {p} {q} q⊆L f∋p p⊆q → lift ( filter1 f (q⊆L q refl-⊆) (lower f∋p) p⊆q) - ; filter2 = λ {p} {q} f∋p f∋q → lift ( filter2 f (lower f∋p) (lower f∋q)) - } - -record F-Dense {n : Level} (L : Set n) (PL : (L → Set n) → Set n) ( _⊆_ : L → L → Set n) (_∩_ : L → L → L ) : Set (suc n) where - field - dense : L → Set n - d⊆P : PL dense - dense-f : L → L - dense-d : { p : L} → PL (λ x → p ⊆ x ) → dense ( dense-f p ) - dense-p : { p : L} → PL (λ x → p ⊆ x ) → p ⊆ (dense-f p) - -Dense-is-F : {L : HOD} → (f : Dense L ) → F-Dense HOD (λ p → (x : HOD) → p x → x ⊆ L ) _⊆_ _∩_ -Dense-is-F {L} f = record { - dense = λ x → Lift (suc n) ((dense f) ∋ x) - ; d⊆P = λ x f∋x → power→⊆ _ _ (incl ( d⊆P f ) (lower f∋x )) - ; dense-f = λ x → dense-f f x - ; dense-d = λ {p} d → lift ( dense-d f (d p refl-⊆ ) ) - ; dense-p = λ {p} d → dense-p f (d p refl-⊆) - } where open Dense - - record GenericFilter (P : HOD) : Set (suc n) where field genf : Filter P generic : (D : Dense P ) → ¬ ( (Dense.dense D ∩ Filter.filter genf ) ≡ od∅ ) -record F-GenericFilter {n : Level} (L : Set n) (PL : (L → Set n) → Set n) ( _⊆_ : L → L → Set n) (_∩_ : L → L → L ) : Set (suc n) where - field - GFilter : F-Filter L PL _⊆_ _∩_ - Intersection : (D : F-Dense L PL _⊆_ _∩_ ) → { x : L } → F-Dense.dense D x → L - Generic : (D : F-Dense L PL _⊆_ _∩_ ) → { x : L } → ( y : F-Dense.dense D x) → F-Filter.filter GFilter (Intersection D y ) -
--- a/src/generic-filter.agda Tue Mar 01 15:33:05 2022 +0900 +++ b/src/generic-filter.agda Fri Mar 04 19:04:08 2022 +0900 @@ -88,9 +88,16 @@ B : (P : HOD ) (C : CountableModel P) (i : Nat) → (x : HOD) → o∅ o< & x → BR B P C Zero x lt = record { b = x ; b>0 = lt } -B P C (Suc i) x lt with is-o∅ ( & (BR.b (B P C i x lt) ∩ A i P C ) ) -... | no _ = record { b = BR.b (B P C i x lt ) ∩ A i P C ; b>0 = {!!} } -... | yes y = record { b = BR.b (B P C i x lt) \ {!!} ; b>0 = {!!} } +B P C (Suc i) x lt with is-o∅ (& (A i P C )) +... | yes _ = B P C i x lt +... | no _ with is-o∅ ( & (BR.b (B P C i x lt) ∩ A i P C ) ) +... | no ne = record { b = BR.b (B P C i x lt ) ∩ A i P C ; b>0 = ¬≡o∅< ne } +... | yes y = record { b = BR.b (B P C i x lt) \ (ODC.minimal O _ (b02 (b01 ? y ))) ; b>0 = {!!} } where + b02 : {x : HOD} → o∅ o< & x → ¬ ( x =h= od∅ ) + b02 = {!!} + b01 : {an bn : HOD} → o∅ o< & bn → &( an ∩ bn ) ≡ o∅ → o∅ o< &( bn \ an ) + b01 = {!!} + B⊆ : (P : HOD ) (C : CountableModel P) (i : Nat) → (x : HOD) → (lt : o∅ o< & x) → BR.b (B P C (Suc i) x lt) ⊆ BR.b (B P C (Suc i) x lt) B⊆ = {!!}