Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1281:437e48221ed5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 06 Apr 2023 14:04:35 +0900 |
parents | a496dbb74a5f |
children | dc5aaf39f27d |
files | src/BAlgebra.agda |
diffstat | 1 files changed, 28 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/BAlgebra.agda Thu Apr 06 11:50:41 2023 +0900 +++ b/src/BAlgebra.agda Thu Apr 06 14:04:35 2023 +0900 @@ -168,19 +168,39 @@ HODBA : (P : HOD) → BooleanAlgebra (PowerP P) HODBA P = record { _=b=_ = λ x y → hod x ≡ hod y ; b1 = ⟦ P , (λ x → x) ⟧ ; b0 = ⟦ od∅ , (λ x → ⊥-elim (¬x<0 x)) ⟧ ; -_ = λ x → ⟦ P \ hod x , proj1 ⟧ - ; _+_ = λ x y → ⟦ hod x ∪ hod y , ? ⟧ ; _x_ = λ x y → ⟦ hod x ∩ hod y , (λ lt → x⊆P x (proj1 lt)) ⟧ + ; _+_ = λ x y → ⟦ hod x ∪ hod y , ba00 x y ⟧ ; _x_ = λ x y → ⟦ hod x ∩ hod y , (λ lt → x⊆P x (proj1 lt)) ⟧ ; isBooleanAlgebra = record { - +-assoc = λ {a} {b} {c} → ==→o≡ record { eq→ = ? ; eq← = ? } + +-assoc = λ {a} {b} {c} → ==→o≡ record { eq→ = ba01 a b c ; eq← = ba02 a b c } ; x-assoc = λ {a} {b} {c} → ==→o≡ record { eq→ = λ lt → ⟪ ⟪ proj1 lt , proj1 (proj2 lt) ⟫ , proj2 (proj2 lt) ⟫ ; eq← = λ lt → ⟪ proj1 (proj1 lt) , ⟪ proj2 (proj1 lt) , proj2 lt ⟫ ⟫ } ; +-sym = ? ; -sym = λ {a} {b} → ==→o≡ record { eq→ = λ lt → ⟪ proj2 lt , proj1 lt ⟫ ; eq← = λ lt → ⟪ proj2 lt , proj1 lt ⟫ } - ; +-aab = λ {a} {b} → ==→o≡ record { eq→ = ? ; eq← = case1 } + ; +-aab = λ {a} {b} → ==→o≡ record { eq→ = ba03 a b ; eq← = case1 } ; x-aab = λ {a} {b} → ==→o≡ record { eq→ = proj1 ; eq← = λ ax → ⟪ ax , case1 ax ⟫ } ; +-dist = dist-ord2 ; x-dist = dist-ord - ; a+0 = ? - ; ax1 = ? - ; a+-a1 = ? - ; ax-a0 = ? } } - + ; a+0 = λ {a} → ==→o≡ record { eq→ = ba04 (hod a) ; eq← = case1 } + ; ax1 = λ {a} → ==→o≡ record { eq→ = proj1 ; eq← = λ ax → ⟪ ax , x⊆P a ax ⟫ } + ; a+-a1 = λ {a} → ==→o≡ record { eq→ = ? ; eq← = ? } + ; ax-a0 = λ {a} → ==→o≡ record { eq→ = ? ; eq← = λ lt → ⊥-elim (¬x<0 lt) } + } } where + ba00 : (x y : PowerP P ) → (hod x ∪ hod y) ⊆ P + ba00 x y (case1 px) = x⊆P x px + ba00 x y (case2 py) = x⊆P y py + ba01 : (a b c : PowerP P) → {x : Ordinal} → odef (hod a) x ∨ odef (hod b ∪ hod c) x → + odef (hod a ∪ hod b) x ∨ odef (hod c) x + ba01 a b c {x} (case1 ax) = case1 (case1 ax) + ba01 a b c {x} (case2 (case1 bx)) = case1 (case2 bx) + ba01 a b c {x} (case2 (case2 cx)) = case2 cx + ba02 : (a b c : PowerP P) → {x : Ordinal} → odef (hod a ∪ hod b) x ∨ odef (hod c) x + → odef (hod a) x ∨ odef (hod b ∪ hod c) x + ba02 a b c {x} (case1 (case1 ax)) = case1 ax + ba02 a b c {x} (case1 (case2 bx)) = case2 (case1 bx) + ba02 a b c {x} (case2 cx) = case2 (case2 cx) + ba03 : (a b : PowerP P) → {x : Ordinal} → + odef (hod a) x ∨ odef (hod a ∩ hod b) x → OD.def (od (hod a)) x + ba03 a b (case1 ax) = ax + ba03 a b (case2 ab) = proj1 ab + ba04 : (a : HOD) → {x : Ordinal} → odef a x ∨ odef od∅ x → odef a x + ba04 a (case1 ax) = ax + ba04 a (case2 x) = ⊥-elim (¬x<0 x)