Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1280:a496dbb74a5f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 06 Apr 2023 11:50:41 +0900 |
parents | 7e7d8d825632 |
children | 437e48221ed5 |
files | src/BAlgebra.agda |
diffstat | 1 files changed, 47 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/src/BAlgebra.agda Thu Apr 06 09:16:52 2023 +0900 +++ b/src/BAlgebra.agda Thu Apr 06 11:50:41 2023 +0900 @@ -1,3 +1,5 @@ +{-# OPTIONS --allow-unsolved-metas #-} + open import Level open import Ordinals module BAlgebra {n : Level } (O : Ordinals {n}) where @@ -124,32 +126,61 @@ lemma2 {x} lt | _ | case1 cp = case1 cp lemma2 {x} lt | case2 cq | case2 cr = case2 ⟪ cq , cr ⟫ -record IsBooleanAlgebra ( L : Set n) +record IsBooleanAlgebra {n : Level} ( L : Set n) + ( _==_ : L → L → Set n ) ( b1 : L ) ( b0 : L ) ( -_ : L → L ) ( _+_ : L → L → L ) ( _x_ : L → L → L ) : Set (suc n) where field - +-assoc : {a b c : L } → a + ( b + c ) ≡ (a + b) + c - x-assoc : {a b c : L } → a x ( b x c ) ≡ (a x b) x c - +-sym : {a b : L } → a + b ≡ b + a - -sym : {a b : L } → a x b ≡ b x a - +-aab : {a b : L } → a + ( a x b ) ≡ a - x-aab : {a b : L } → a x ( a + b ) ≡ a - +-dist : {a b c : L } → a + ( b x c ) ≡ ( a x b ) + ( a x c ) - x-dist : {a b c : L } → a x ( b + c ) ≡ ( a + b ) x ( a + c ) - a+0 : {a : L } → a + b0 ≡ a - ax1 : {a : L } → a x b1 ≡ a - a+-a1 : {a : L } → a + ( - a ) ≡ b1 - ax-a0 : {a : L } → a x ( - a ) ≡ b0 + +-assoc : {a b c : L } → (a + ( b + c )) == ((a + b) + c) + x-assoc : {a b c : L } → (a x ( b x c )) == ((a x b) x c) + +-sym : {a b : L } → (a + b) == (b + a) + -sym : {a b : L } → (a x b) == (b x a) + +-aab : {a b : L } → (a + ( a x b )) == a + x-aab : {a b : L } → (a x ( a + b )) == a + +-dist : {a b c : L } → (a + ( b x c )) == (( a + b ) x ( a + c )) + x-dist : {a b c : L } → (a x ( b + c )) == (( a x b ) + ( a x c )) + a+0 : {a : L } → (a + b0) == a + ax1 : {a : L } → (a x b1) == a + a+-a1 : {a : L } → (a + ( - a )) == b1 + ax-a0 : {a : L } → (a x ( - a )) == b0 -record BooleanAlgebra ( L : Set n) : Set (suc n) where +record BooleanAlgebra {n : Level} ( L : Set n) : Set (suc n) where field + _=b=_ : L → L → Set n b1 : L b0 : L -_ : L → L _+_ : L → L → L _x_ : L → L → L - isBooleanAlgebra : IsBooleanAlgebra L b1 b0 -_ _+_ _x_ - + isBooleanAlgebra : IsBooleanAlgebra L _=b=_ b1 b0 -_ _+_ _x_ + +record PowerP (P : HOD) : Set (suc n) where + constructor ⟦_,_⟧ + field + hod : HOD + x⊆P : hod ⊆ P + +open PowerP + +HODBA : (P : HOD) → BooleanAlgebra (PowerP P) +HODBA P = record { _=b=_ = λ x y → hod x ≡ hod y ; b1 = ⟦ P , (λ x → x) ⟧ ; b0 = ⟦ od∅ , (λ x → ⊥-elim (¬x<0 x)) ⟧ + ; -_ = λ x → ⟦ P \ hod x , proj1 ⟧ + ; _+_ = λ x y → ⟦ hod x ∪ hod y , ? ⟧ ; _x_ = λ x y → ⟦ hod x ∩ hod y , (λ lt → x⊆P x (proj1 lt)) ⟧ + ; isBooleanAlgebra = record { + +-assoc = λ {a} {b} {c} → ==→o≡ record { eq→ = ? ; eq← = ? } + ; x-assoc = λ {a} {b} {c} → ==→o≡ record { eq→ = λ lt → ⟪ ⟪ proj1 lt , proj1 (proj2 lt) ⟫ , proj2 (proj2 lt) ⟫ + ; eq← = λ lt → ⟪ proj1 (proj1 lt) , ⟪ proj2 (proj1 lt) , proj2 lt ⟫ ⟫ } + ; +-sym = ? + ; -sym = λ {a} {b} → ==→o≡ record { eq→ = λ lt → ⟪ proj2 lt , proj1 lt ⟫ ; eq← = λ lt → ⟪ proj2 lt , proj1 lt ⟫ } + ; +-aab = λ {a} {b} → ==→o≡ record { eq→ = ? ; eq← = case1 } + ; x-aab = λ {a} {b} → ==→o≡ record { eq→ = proj1 ; eq← = λ ax → ⟪ ax , case1 ax ⟫ } + ; +-dist = dist-ord2 + ; x-dist = dist-ord + ; a+0 = ? + ; ax1 = ? + ; a+-a1 = ? + ; ax-a0 = ? } } +