Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 167:4724f7be00e3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 18 Jul 2019 16:06:41 +0900 |
parents | ea0e7927637a |
children | b25a4eca06a6 |
files | HOD.agda ordinal.agda |
diffstat | 2 files changed, 22 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Wed Jul 17 10:52:31 2019 +0900 +++ b/HOD.agda Thu Jul 18 16:06:41 2019 +0900 @@ -72,6 +72,7 @@ -- sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} -- sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) -- sup-lb : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ( ∀ {x : Ordinal {n}} → ψx o< z ) → z o< osuc ( sup-o ψ ) + -- mimimul and x∋minimul is a weaker form of Axiom of choice minimul : {n : Level } → (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimul : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) ) @@ -202,6 +203,11 @@ is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) +OrdP : {n : Level} → ( x : Ordinal {suc n} ) ( y : OD {suc n} ) → Dec ( Ord x ∋ y ) +OrdP {n} x y with trio< x (od→ord y) +OrdP {n} x y | tri< a ¬b ¬c = no ¬c +OrdP {n} x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) +OrdP {n} x y | tri> ¬a ¬b c = yes c -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) @@ -228,7 +234,7 @@ L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) cseq ( Ord (od→ord (L {n} (record { lv = lx ; ord = Φ lx })))) --- L0 : {n : Level} → (α : Ordinal {suc n}) → α o< β → L (osuc α) ∋ L α +-- L0 : {n : Level} → (α : Ordinal {suc n}) → L (osuc α) ∋ L α -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : OD {suc n}) → L α ∋ x → L β ∋ x OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} @@ -299,7 +305,7 @@ proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) - empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) + empty : {n : Level } (x : OD {suc n} ) → ¬ (od∅ ∋ x) empty x (case1 ()) empty x (case2 ()) @@ -461,3 +467,16 @@ choice : (X : OD {suc n} ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A choice X {A} X∋A not = x∋minimul A not + ε-induction : {n m : Level} { ψ : OD {suc n} → Set m} + → ( {x : OD {suc n} } → ({ y : OD {suc n} } → x ∋ y → ψ y ) → ψ x ) + → (x : OD {suc n} ) → ψ x + ε-induction {n} {m} {ψ} ind x with od→ord x | oiso {suc n} {x} + ε-induction {n} {m} {ψ} ind x | record { lv = Zero ; ord = Φ 0 } | refl = ind (lemma o∅≡od∅ ) where + lemma : { y : OD {suc n} } → x ≡ od∅ → x ∋ y → ψ y + lemma {y} eq lt with empty y (o<-subst (c<→o< lt) refl diso ) + lemma {y} eq lt | () + ε-induction {n} {m} {ψ} ind x | record { lv = Zero ; ord = OSuc 0 ox } | refl = {!!} + ε-induction {n} {m} {ψ} ind x | record { lv = Suc lx ; ord = Φ (Suc lx) } | refl = {!!} + ε-induction {n} {m} {ψ} ind x | record { lv = Suc lx ; ord = OSuc (Suc lx) ox } | refl = {!!} + +-- subst (λ k → ψ k ) oiso (TransFinite {suc n} {suc (suc n) ⊔ m} {λ x → ({y : Ordinal } → y o< x → ψ y ) → ψ (ord→od x) } {!!} {!!} {!!} {!!})
--- a/ordinal.agda Wed Jul 17 10:52:31 2019 +0900 +++ b/ordinal.agda Thu Jul 18 16:06:41 2019 +0900 @@ -313,7 +313,7 @@ } } -TransFinite : {n : Level} → { ψ : Ordinal {n} → Set n } +TransFinite : {n m : Level} → { ψ : Ordinal {n} → Set m } → ( ∀ (lx : Nat ) → ψ ( record { lv = lx ; ord = Φ lx } ) ) → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) ) → ∀ (x : Ordinal) → ψ x