Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 168:b25a4eca06a6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Jul 2019 03:27:58 +0900 |
parents | 4724f7be00e3 |
children | acbcbd98d588 |
files | HOD.agda |
diffstat | 1 files changed, 16 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Thu Jul 18 16:06:41 2019 +0900 +++ b/HOD.agda Fri Jul 19 03:27:58 2019 +0900 @@ -467,16 +467,23 @@ choice : (X : OD {suc n} ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A choice X {A} X∋A not = x∋minimul A not + -- another form of regularity + -- ε-induction : {n m : Level} { ψ : OD {suc n} → Set m} → ( {x : OD {suc n} } → ({ y : OD {suc n} } → x ∋ y → ψ y ) → ψ x ) → (x : OD {suc n} ) → ψ x - ε-induction {n} {m} {ψ} ind x with od→ord x | oiso {suc n} {x} - ε-induction {n} {m} {ψ} ind x | record { lv = Zero ; ord = Φ 0 } | refl = ind (lemma o∅≡od∅ ) where - lemma : { y : OD {suc n} } → x ≡ od∅ → x ∋ y → ψ y - lemma {y} eq lt with empty y (o<-subst (c<→o< lt) refl diso ) - lemma {y} eq lt | () - ε-induction {n} {m} {ψ} ind x | record { lv = Zero ; ord = OSuc 0 ox } | refl = {!!} - ε-induction {n} {m} {ψ} ind x | record { lv = Suc lx ; ord = Φ (Suc lx) } | refl = {!!} - ε-induction {n} {m} {ψ} ind x | record { lv = Suc lx ; ord = OSuc (Suc lx) ox } | refl = {!!} + ε-induction {n} {m} {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (osuc (od→ord x)) <-osuc) where + ε-induction-ord : ( ox : Ordinal {suc n} ) {oy : Ordinal {suc n} } → oy o< ox → ψ (ord→od oy) + ε-induction-ord record { lv = Zero ; ord = (Φ 0) } (case1 ()) + ε-induction-ord record { lv = Zero ; ord = (Φ 0) } (case2 ()) + ε-induction-ord record { lv = lx ; ord = (OSuc lx ox) } {oy} y<x = + ind {ord→od oy} ( λ {y} lt → subst (λ k → ψ k ) oiso (ε-induction-ord (record { lv = lx ; ord = ox} ) (lemma y lt ))) where + lemma : (y : OD) → ord→od oy ∋ y → od→ord y o< record { lv = lx ; ord = ox } + lemma y lt with osuc-≡< y<x + lemma y lt | case1 refl = o<-subst (c<→o< lt) refl diso + lemma y lt | case2 lt1 = ordtrans (o<-subst (c<→o< lt) refl diso) lt1 + ε-induction-ord record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } {record { lv = ly ; ord = OSuc ly oy }} (case1 (s≤s x)) = + ind {ord→od record { lv = ly ; ord = OSuc ly oy }} ( + λ {y} lt → subst ( λ k → ψ k ) oiso ( ε-induction-ord record { lv = lx ; ord = (Φ lx) } {od→ord y} {!!})) where + ε-induction-ord record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } {record { lv = ly ; ord = Φ ly }} (case1 (s≤s x)) = {!!} --- subst (λ k → ψ k ) oiso (TransFinite {suc n} {suc (suc n) ⊔ m} {λ x → ({y : Ordinal } → y o< x → ψ y ) → ψ (ord→od x) } {!!} {!!} {!!} {!!})