Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 228:49736efc822b
try transfinite
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 11 Aug 2019 20:42:48 +0900 |
parents | a4cdfc84f65f |
children | 5e36744b8dce |
files | OD.agda cardinal.agda |
diffstat | 2 files changed, 10 insertions(+), 25 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sun Aug 11 18:37:33 2019 +0900 +++ b/OD.agda Sun Aug 11 20:42:48 2019 +0900 @@ -483,3 +483,4 @@ Select = ZF.Select OD→ZF Replace = ZF.Replace OD→ZF isZF = ZF.isZF OD→ZF +TransFinite = IsOrdinals.TransFinite (Ordinals.isOrdinal O)
--- a/cardinal.agda Sun Aug 11 18:37:33 2019 +0900 +++ b/cardinal.agda Sun Aug 11 20:42:48 2019 +0900 @@ -51,30 +51,10 @@ -- contra position of sup-o< -- -record Sup ( ψ : Ordinal → Ordinal ) : Set n where - field - sup-x : Ordinal - sup-lb : {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ sup-x ) - -sup-o> : ( ψ : Ordinal → Ordinal ) → Sup ψ -sup-o> ψ = record { - sup-x = od→ord ( minimul (Ord (osuc (sup-o ψ))) lemma ) - ; sup-lb = λ {z} z<sψ → lemma1 z<sψ - } where - lemma0 : {x : Ordinal} → o∅ o< osuc x - lemma0 {x} with trio< o∅ (osuc x) - lemma0 {x} | tri< a ¬b ¬c = a - lemma0 {x} | tri≈ ¬a refl ¬c = ⊥-elim (¬x<0 <-osuc ) - lemma0 {x} | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) - lemma : ¬ (Ord (osuc (sup-o ψ)) == od∅) - lemma record { eq→ = eq→ ; eq← = eq← } = ¬x<0 {o∅} ( eq→ lemma0 ) - lemma1 : {z : Ordinal} → z o< sup-o ψ → z o< osuc (ψ (od→ord (minimul (Ord (osuc (sup-o ψ))) lemma))) - lemma1 {z} lt with trio< z (ψ (od→ord (minimul (Ord (osuc (sup-o ψ))) lemma))) - lemma1 {z} lt | tri< a ¬b ¬c = ordtrans a <-osuc - lemma1 {z} lt | tri≈ ¬a refl ¬c = <-osuc - lemma1 {z} lt | tri> ¬a ¬b c = ⊥-elim (o<> c lemma2 ) where - lemma2 : z o< ψ (od→ord (minimul (Ord (osuc (sup-o ψ))) lemma)) - lemma2 = ordtrans sup-o< ( o<-subst (x∋minimul (Ord (osuc (sup-o ψ))) lemma ) ? ?) +postulate + -- contra-position of mimimulity of supermum required in Cardinal + sup-x : ( Ordinal → Ordinal ) → Ordinal + sup-lb : { ψ : Ordinal → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) ------------ -- @@ -107,8 +87,12 @@ cardinal-p x with p∨¬p ( Onto (Ord x) X ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } + lemma1 : (x : Ordinal) → ((y : Ordinal) → y o< x → Lift (suc n) (y o< (osuc (sup-o (λ x₁ → proj1 (cardinal-p x₁)))) → Onto (Ord y) X)) → + Lift (suc n) (x o< (osuc (sup-o (λ x₁ → proj1 (cardinal-p x₁)))) → Onto (Ord x) X) + lemma1 = {!!} onto : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X - onto = {!!} + onto with TransFinite {λ x → Lift (suc n) ( x o< osuc (sup-o (λ x → proj1 (cardinal-p x))) → Onto (Ord x) X ) } lemma1 (sup-o (λ x → proj1 (cardinal-p x))) + ... | lift t = t <-osuc where cmax : (y : Ordinal) → sup-o (λ x → proj1 (cardinal-p x)) o< y → ¬ Onto (Ord y) X cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} (sup-o< {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where