Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 229:5e36744b8dce
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 12 Aug 2019 02:26:32 +0900 |
parents | 49736efc822b |
children | 1b1620e2053c |
files | cardinal.agda |
diffstat | 1 files changed, 13 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/cardinal.agda Sun Aug 11 20:42:48 2019 +0900 +++ b/cardinal.agda Mon Aug 12 02:26:32 2019 +0900 @@ -87,14 +87,20 @@ cardinal-p x with p∨¬p ( Onto (Ord x) X ) cardinal-p x | case1 True = record { proj1 = x ; proj2 = yes True } cardinal-p x | case2 False = record { proj1 = o∅ ; proj2 = no False } - lemma1 : (x : Ordinal) → ((y : Ordinal) → y o< x → Lift (suc n) (y o< (osuc (sup-o (λ x₁ → proj1 (cardinal-p x₁)))) → Onto (Ord y) X)) → - Lift (suc n) (x o< (osuc (sup-o (λ x₁ → proj1 (cardinal-p x₁)))) → Onto (Ord x) X) - lemma1 = {!!} - onto : Onto (Ord (sup-o (λ x → proj1 (cardinal-p x)))) X - onto with TransFinite {λ x → Lift (suc n) ( x o< osuc (sup-o (λ x → proj1 (cardinal-p x))) → Onto (Ord x) X ) } lemma1 (sup-o (λ x → proj1 (cardinal-p x))) + S = sup-o (λ x → proj1 (cardinal-p x)) + lemma1 : (x : Ordinal) → ((y : Ordinal) → y o< x → Lift (suc n) (y o< (osuc S) → Onto (Ord y) X)) → + Lift (suc n) (x o< (osuc S) → Onto (Ord x) X) + lemma1 x prev with trio< x (osuc S) + lemma1 x prev | tri< a ¬b ¬c with osuc-≡< a + lemma1 x prev | tri< a ¬b ¬c | case1 x=S = {!!} + lemma1 x prev | tri< a ¬b ¬c | case2 x<S = {!!} + lemma1 x prev | tri≈ ¬a b ¬c = lift ( λ lt → ⊥-elim ( o<¬≡ b lt )) + lemma1 x prev | tri> ¬a ¬b c = lift ( λ lt → ⊥-elim ( o<> c lt )) + onto : Onto (Ord S) X + onto with TransFinite {λ x → Lift (suc n) ( x o< osuc S → Onto (Ord x) X ) } lemma1 S ... | lift t = t <-osuc where - cmax : (y : Ordinal) → sup-o (λ x → proj1 (cardinal-p x)) o< y → ¬ Onto (Ord y) X - cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {sup-o (λ x → proj1 (cardinal-p x))} + cmax : (y : Ordinal) → S o< y → ¬ Onto (Ord y) X + cmax y lt ontoy = o<> lt (o<-subst {_} {_} {y} {S} (sup-o< {λ x → proj1 ( cardinal-p x)}{y} ) lemma refl ) where lemma : proj1 (cardinal-p y) ≡ y lemma with p∨¬p ( Onto (Ord y) X )