Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 175:51189f7b9229
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Jul 2019 17:16:43 +0900 |
parents | ad7a6185b6d5 |
children | ecb329ba38ac |
files | HOD.agda |
diffstat | 1 files changed, 3 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Fri Jul 19 16:36:46 2019 +0900 +++ b/HOD.agda Fri Jul 19 17:16:43 2019 +0900 @@ -285,13 +285,12 @@ lemma z lt | case2 lz=ly | tri> ¬a ¬b c with d<→lv lz=ly -- z(b) ... | eq = subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → k < lx ) (trans (sym lemma1)(sym eq) ) c ))) lemma z lt | case2 lz=ly | tri≈ ¬a refl ¬c with d<→lv lz=ly -- z(c) - ... | eq = subst ( λ k → ψ k ) oiso (lemma6 {lx} {lv (od→ord (ord→od (record { lv = lx ; ord = oy })))} {lv (od→ord z)} - {oy} {_} (sym lemma1) (sym eq) (trans (sym lemma1) (sym eq)) lz=ly ) where + ... | eq = lemma6 {lx} {ly} {lv (od→ord z)} {Φ lx} {oy} {ord (od→ord z)} {!!} ? ? where lemma5 : (ox : OrdinalD lx) → (lv (od→ord z) < lx) ∨ (ord (od→ord z) d< ox) → ψ z lemma5 ox lt = subst (λ k → ψ k ) oiso (ε-induction-ord lx ox lt ) lemma6 : { lx ly lz : Nat } { ox : OrdinalD {suc n} lx } { oy : OrdinalD {suc n} ly } { oz : OrdinalD {suc n} lz } → - lx ≡ ly → ly ≡ lz → lx ≡ lz → oz d< oy → ψ (ord→od ( record { lv = lz ; ord = oz} )) - lemma6 {lx} {ly} {lz} {ox} {oy} {oz} refl refl refl _ = ? -- subst ( λ k → ψ k ) (sym oiso) ( lemma5 {!!} {!!} ) + lx ≡ ly → ly ≡ lz → oz d< oy → ψ z + lemma6 {lx} {ly} {lz} {ox} {oy} {oz} refl refl _ = lemma5 {!!} (case2 {!!} ) OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n}