Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 174:ad7a6185b6d5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Jul 2019 16:36:46 +0900 |
parents | e6e1bdbda450 |
children | 51189f7b9229 |
files | HOD.agda |
diffstat | 1 files changed, 8 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Fri Jul 19 15:28:20 2019 +0900 +++ b/HOD.agda Fri Jul 19 16:36:46 2019 +0900 @@ -285,12 +285,14 @@ lemma z lt | case2 lz=ly | tri> ¬a ¬b c with d<→lv lz=ly -- z(b) ... | eq = subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → k < lx ) (trans (sym lemma1)(sym eq) ) c ))) lemma z lt | case2 lz=ly | tri≈ ¬a refl ¬c with d<→lv lz=ly -- z(c) - ... | eq = subst (λ k → ψ k ) oiso (ε-induction-ord lx - (ox lz=ly -- ord (od→ord z) d< ord (od→ord (ord→od (record { lv = lx ; ord = oy }))) - (subst (λ k → lv (od→ord z) ≡ k ) lemma1 eq) ) {_} {ord (od→ord z)} (case2 {!!})) where - ox : {lx lz : Nat} → {oy : OrdinalD {suc n} lz} {oz : OrdinalD {suc n} lx} → {!!} d< {!!} → lz ≡ lx → OrdinalD {suc n} lx - ox = ? - + ... | eq = subst ( λ k → ψ k ) oiso (lemma6 {lx} {lv (od→ord (ord→od (record { lv = lx ; ord = oy })))} {lv (od→ord z)} + {oy} {_} (sym lemma1) (sym eq) (trans (sym lemma1) (sym eq)) lz=ly ) where + lemma5 : (ox : OrdinalD lx) → (lv (od→ord z) < lx) ∨ (ord (od→ord z) d< ox) → ψ z + lemma5 ox lt = subst (λ k → ψ k ) oiso (ε-induction-ord lx ox lt ) + lemma6 : { lx ly lz : Nat } { ox : OrdinalD {suc n} lx } { oy : OrdinalD {suc n} ly } { oz : OrdinalD {suc n} lz } → + lx ≡ ly → ly ≡ lz → lx ≡ lz → oz d< oy → ψ (ord→od ( record { lv = lz ; ord = oz} )) + lemma6 {lx} {ly} {lz} {ox} {oy} {oz} refl refl refl _ = ? -- subst ( λ k → ψ k ) (sym oiso) ( lemma5 {!!} {!!} ) + OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record {