Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 173:e6e1bdbda450
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Jul 2019 15:28:20 +0900 |
parents | 8c4d1423d7c4 |
children | ad7a6185b6d5 |
files | HOD.agda |
diffstat | 1 files changed, 6 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Fri Jul 19 14:59:28 2019 +0900 +++ b/HOD.agda Fri Jul 19 15:28:20 2019 +0900 @@ -238,7 +238,7 @@ -- another form of regularity -- -{-# TERMINATING #-} +-- {-# TERMINATING #-} ε-induction : {n m : Level} { ψ : OD {suc n} → Set m} → ( {x : OD {suc n} } → ({ y : OD {suc n} } → x ∋ y → ψ y ) → ψ x ) → (x : OD {suc n} ) → ψ x @@ -285,8 +285,11 @@ lemma z lt | case2 lz=ly | tri> ¬a ¬b c with d<→lv lz=ly -- z(b) ... | eq = subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → k < lx ) (trans (sym lemma1)(sym eq) ) c ))) lemma z lt | case2 lz=ly | tri≈ ¬a refl ¬c with d<→lv lz=ly -- z(c) - ... | eq = subst (λ k → ψ k ) oiso (ε-induction-ord (Suc lx) (Φ (Suc lx)) {_} {ord (od→ord z)} - (case1 (subst (λ k → k < Suc lx) (trans (sym lemma1) (sym eq)) lemma2 ))) + ... | eq = subst (λ k → ψ k ) oiso (ε-induction-ord lx + (ox lz=ly -- ord (od→ord z) d< ord (od→ord (ord→od (record { lv = lx ; ord = oy }))) + (subst (λ k → lv (od→ord z) ≡ k ) lemma1 eq) ) {_} {ord (od→ord z)} (case2 {!!})) where + ox : {lx lz : Nat} → {oy : OrdinalD {suc n} lz} {oz : OrdinalD {suc n} lx} → {!!} d< {!!} → lz ≡ lx → OrdinalD {suc n} lx + ox = ? OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n}