Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 172:8c4d1423d7c4
non terminateing on ε-induction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Jul 2019 14:59:28 +0900 |
parents | 729b80df8a8a |
children | e6e1bdbda450 |
files | HOD.agda |
diffstat | 1 files changed, 45 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Fri Jul 19 08:34:36 2019 +0900 +++ b/HOD.agda Fri Jul 19 14:59:28 2019 +0900 @@ -238,31 +238,56 @@ -- another form of regularity -- --- {-# TERMINATING #-} +{-# TERMINATING #-} ε-induction : {n m : Level} { ψ : OD {suc n} → Set m} → ( {x : OD {suc n} } → ({ y : OD {suc n} } → x ∋ y → ψ y ) → ψ x ) → (x : OD {suc n} ) → ψ x -ε-induction {n} {m} {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (osuc (od→ord x)) <-osuc) where - ε-induction-ord : ( ox : Ordinal {suc n} ) {oy : Ordinal {suc n} } → oy o< ox → ψ (ord→od oy) - ε-induction-ord record { lv = Zero ; ord = (Φ 0) } (case1 ()) - ε-induction-ord record { lv = Zero ; ord = (Φ 0) } (case2 ()) - ε-induction-ord record { lv = lx ; ord = (OSuc lx ox) } {oy} y<x = - ind {ord→od oy} ( λ {y} lt → subst (λ k → ψ k ) oiso (ε-induction-ord (record { lv = lx ; ord = ox} ) (lemma y lt ))) where - lemma : (y : OD) → ord→od oy ∋ y → od→ord y o< record { lv = lx ; ord = ox } +ε-induction {n} {m} {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (lv (osuc (od→ord x))) (ord (osuc (od→ord x))) <-osuc) where + ε-induction-ord : (lx : Nat) ( ox : OrdinalD {suc n} lx ) {ly : Nat} {oy : OrdinalD {suc n} ly } + → (ly < lx) ∨ (oy d< ox ) → ψ (ord→od (record { lv = ly ; ord = oy } ) ) + ε-induction-ord Zero (Φ 0) (case1 ()) + ε-induction-ord Zero (Φ 0) (case2 ()) + ε-induction-ord lx (OSuc lx ox) {ly} {oy} y<x = + ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → subst (λ k → ψ k ) oiso (ε-induction-ord lx ox (lemma y lt ))) where + lemma : (y : OD) → ord→od record { lv = ly ; ord = oy } ∋ y → od→ord y o< record { lv = lx ; ord = ox } lemma y lt with osuc-≡< y<x lemma y lt | case1 refl = o<-subst (c<→o< lt) refl diso - lemma y lt | case2 lt1 = ordtrans (o<-subst (c<→o< lt) refl diso) lt1 - ε-induction-ord record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } {oy} = - TransFinite {suc n} {suc n ⊔ m} {λ x → x o< record { lv = Suc lx ; ord = Φ (Suc lx) } → ψ (ord→od x)} lemma1 lemma2 oy where - lemma1 : (ly : Nat) → - record { lv = ly ; ord = Φ ly } o< record { lv = Suc lx ; ord = Φ (Suc lx) } → - ψ (ord→od (record { lv = ly ; ord = Φ ly })) - lemma1 ly lt = ind {!!} - lemma2 : (ly : Nat) (oy : OrdinalD ly) → - (record { lv = ly ; ord = oy } o< record { lv = Suc lx ; ord = Φ (Suc lx) } → ψ (ord→od (record { lv = ly ; ord = oy }))) → - record { lv = ly ; ord = OSuc ly oy } o< record { lv = Suc lx ; ord = Φ (Suc lx) } → ψ (ord→od (record { lv = ly ; ord = OSuc ly oy })) - lemma2 ly oy p lt = ind {!!} - + lemma y lt | case2 lt1 = ordtrans (o<-subst (c<→o< lt) refl diso) lt1 + ε-induction-ord (Suc lx) (Φ (Suc lx)) {ly} {oy} (case1 y<sox ) = + ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → lemma y lt ) where + lemma0 : { lx ly : Nat } → ly < Suc lx → lx < ly → ⊥ + lemma0 {Suc lx} {Suc ly} (s≤s lt1) (s≤s lt2) = lemma0 lt1 lt2 + lemma1 : {n : Level } {ly : Nat} {oy : OrdinalD {suc n} ly} → lv (od→ord (ord→od (record { lv = ly ; ord = oy }))) ≡ ly + lemma1 {n} {ly} {oy} = let open ≡-Reasoning in begin + lv (od→ord (ord→od (record { lv = ly ; ord = oy }))) + ≡⟨ cong ( λ k → lv k ) diso ⟩ + lv (record { lv = ly ; ord = oy }) + ≡⟨⟩ + ly + ∎ + lemma2 : { lx : Nat } → lx < Suc lx + lemma2 {Zero} = s≤s z≤n + lemma2 {Suc lx} = s≤s (lemma2 {lx}) + -- lx Suc lx (1) z(a) <lx by case1 + -- ly(1) ly(2) (2) z(b) <lx by case1 + -- z(a) z(b) z(c) z(c) <lx by case2 ( ly==z==x) + -- + lemma : (z : OD) → ord→od record { lv = ly ; ord = oy } ∋ z → ψ z + lemma z lt with c<→o< {suc n} {z} {ord→od (record { lv = ly ; ord = oy })} lt + lemma z lt | case1 lz<ly with <-cmp lx ly + lemma z lt | case1 lz<ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen + lemma z lt | case1 lz<ly | tri≈ ¬a refl ¬c = -- (1) + subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → lv (od→ord z) < k ) lemma1 lz<ly ) )) + lemma z lt | case1 lz<ly | tri> ¬a ¬b c = -- z(a) + subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (<-trans lz<ly (subst (λ k → k < lx ) (sym lemma1) c)))) + lemma z lt | case2 lz=ly with <-cmp lx ly + lemma z lt | case2 lz=ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen + lemma z lt | case2 lz=ly | tri> ¬a ¬b c with d<→lv lz=ly -- z(b) + ... | eq = subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → k < lx ) (trans (sym lemma1)(sym eq) ) c ))) + lemma z lt | case2 lz=ly | tri≈ ¬a refl ¬c with d<→lv lz=ly -- z(c) + ... | eq = subst (λ k → ψ k ) oiso (ε-induction-ord (Suc lx) (Φ (Suc lx)) {_} {ord (od→ord z)} + (case1 (subst (λ k → k < Suc lx) (trans (sym lemma1) (sym eq)) lemma2 ))) + OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record {