Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 171:729b80df8a8a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Jul 2019 08:34:36 +0900 |
parents | c96f28c3c387 |
children | 8c4d1423d7c4 |
files | HOD.agda |
diffstat | 1 files changed, 11 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Fri Jul 19 07:04:13 2019 +0900 +++ b/HOD.agda Fri Jul 19 08:34:36 2019 +0900 @@ -238,7 +238,7 @@ -- another form of regularity -- -{-# TERMINATING #-} +-- {-# TERMINATING #-} ε-induction : {n m : Level} { ψ : OD {suc n} → Set m} → ( {x : OD {suc n} } → ({ y : OD {suc n} } → x ∋ y → ψ y ) → ψ x ) → (x : OD {suc n} ) → ψ x @@ -252,12 +252,16 @@ lemma y lt with osuc-≡< y<x lemma y lt | case1 refl = o<-subst (c<→o< lt) refl diso lemma y lt | case2 lt1 = ordtrans (o<-subst (c<→o< lt) refl diso) lt1 - ε-induction-ord record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } {record { lv = ly ; ord = oy }} (case1 (s≤s x)) with <-cmp lx ly - ... | tri< a ¬b ¬c = ⊥-elim (lemma a x ) where - lemma : {lx ly : Nat} → Suc lx ≤ ly → ly ≤ lx → ⊥ - lemma (s≤s lt1) (s≤s lt2) = lemma lt1 lt2 - ... | tri≈ ¬a refl ¬c = ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → subst (λ k → ψ k ) oiso ? - ... | tri> ¬a ¬b c = ε-induction-ord record { lv = lx ; ord = (Φ lx) } (case1 c) + ε-induction-ord record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } {oy} = + TransFinite {suc n} {suc n ⊔ m} {λ x → x o< record { lv = Suc lx ; ord = Φ (Suc lx) } → ψ (ord→od x)} lemma1 lemma2 oy where + lemma1 : (ly : Nat) → + record { lv = ly ; ord = Φ ly } o< record { lv = Suc lx ; ord = Φ (Suc lx) } → + ψ (ord→od (record { lv = ly ; ord = Φ ly })) + lemma1 ly lt = ind {!!} + lemma2 : (ly : Nat) (oy : OrdinalD ly) → + (record { lv = ly ; ord = oy } o< record { lv = Suc lx ; ord = Φ (Suc lx) } → ψ (ord→od (record { lv = ly ; ord = oy }))) → + record { lv = ly ; ord = OSuc ly oy } o< record { lv = Suc lx ; ord = Φ (Suc lx) } → ψ (ord→od (record { lv = ly ; ord = OSuc ly oy })) + lemma2 ly oy p lt = ind {!!} OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n}