Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 170:c96f28c3c387
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Jul 2019 07:04:13 +0900 |
parents | acbcbd98d588 |
children | 729b80df8a8a |
files | HOD.agda |
diffstat | 1 files changed, 24 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Fri Jul 19 05:12:08 2019 +0900 +++ b/HOD.agda Fri Jul 19 07:04:13 2019 +0900 @@ -18,7 +18,6 @@ def : (x : Ordinal {n} ) → Set n open OD -open import Data.Unit open Ordinal open _∧_ @@ -237,6 +236,30 @@ -- L0 : {n : Level} → (α : Ordinal {suc n}) → L (osuc α) ∋ L α -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : OD {suc n}) → L α ∋ x → L β ∋ x +-- another form of regularity +-- +{-# TERMINATING #-} +ε-induction : {n m : Level} { ψ : OD {suc n} → Set m} + → ( {x : OD {suc n} } → ({ y : OD {suc n} } → x ∋ y → ψ y ) → ψ x ) + → (x : OD {suc n} ) → ψ x +ε-induction {n} {m} {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (osuc (od→ord x)) <-osuc) where + ε-induction-ord : ( ox : Ordinal {suc n} ) {oy : Ordinal {suc n} } → oy o< ox → ψ (ord→od oy) + ε-induction-ord record { lv = Zero ; ord = (Φ 0) } (case1 ()) + ε-induction-ord record { lv = Zero ; ord = (Φ 0) } (case2 ()) + ε-induction-ord record { lv = lx ; ord = (OSuc lx ox) } {oy} y<x = + ind {ord→od oy} ( λ {y} lt → subst (λ k → ψ k ) oiso (ε-induction-ord (record { lv = lx ; ord = ox} ) (lemma y lt ))) where + lemma : (y : OD) → ord→od oy ∋ y → od→ord y o< record { lv = lx ; ord = ox } + lemma y lt with osuc-≡< y<x + lemma y lt | case1 refl = o<-subst (c<→o< lt) refl diso + lemma y lt | case2 lt1 = ordtrans (o<-subst (c<→o< lt) refl diso) lt1 + ε-induction-ord record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } {record { lv = ly ; ord = oy }} (case1 (s≤s x)) with <-cmp lx ly + ... | tri< a ¬b ¬c = ⊥-elim (lemma a x ) where + lemma : {lx ly : Nat} → Suc lx ≤ ly → ly ≤ lx → ⊥ + lemma (s≤s lt1) (s≤s lt2) = lemma lt1 lt2 + ... | tri≈ ¬a refl ¬c = ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → subst (λ k → ψ k ) oiso ? + ... | tri> ¬a ¬b c = ε-induction-ord record { lv = lx ; ord = (Φ lx) } (case1 c) + + OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record { ZFSet = OD {suc n} @@ -467,23 +490,3 @@ choice : (X : OD {suc n} ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A choice X {A} X∋A not = x∋minimul A not - -- another form of regularity - -- - ε-induction : {n m : Level} { ψ : OD {suc n} → Set m} - → ( {x : OD {suc n} } → ({ y : OD {suc n} } → x ∋ y → ψ y ) → ψ x ) - → (x : OD {suc n} ) → ψ x - ε-induction {n} {m} {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (osuc (od→ord x)) <-osuc) where - ε-induction-ord : ( ox : Ordinal {suc n} ) {oy : Ordinal {suc n} } → oy o< ox → ψ (ord→od oy) - ε-induction-ord ox = TransFinite {suc n} {suc n ⊔ m} {λ z → {oy : Ordinal {suc n} } → oy o< z → ψ (ord→od oy) } lemma1 lemma2 ox where - lemma1 : (lx : Nat) {oy : Ordinal} → oy o< record { lv = lx ; ord = Φ lx } → ψ (ord→od oy) - lemma1 Zero {oy} (case1 ()) - lemma1 Zero {oy} (case2 ()) - lemma1 (Suc lx) {record { lv = Zero ; ord = Φ 0 }} (case1 (s≤s z≤n)) = {!!} - lemma1 (Suc lx) {record { lv = Zero ; ord = OSuc 0 oy }} (case1 (s≤s z≤n)) = {!!} - lemma1 (Suc (Suc lx)) {record { lv = Suc ly ; ord = Φ (Suc ly) }} (case1 (s≤s (s≤s x))) = {!!} - lemma1 (Suc (Suc lx)) {record { lv = Suc ly ; ord = OSuc (Suc ly) oy }} (case1 (s≤s (s≤s x))) = {!!} - lemma2 : (lx : Nat) (x₁ : OrdinalD lx) → - ({oy : Ordinal} → oy o< record { lv = lx ; ord = x₁ } → ψ (ord→od oy)) → - {oy : Ordinal} → oy o< record { lv = lx ; ord = OSuc lx x₁ } → ψ (ord→od oy) - lemma2 lx x1 p lt = ind ( λ {y} lty → subst (λ k → ψ k) oiso (p {!!} )) -