Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 392:55f44ec2a0c6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 Jul 2020 17:36:27 +0900 |
parents | e98b5774d180 |
children | 43b0a6ca7602 |
files | generic-filter.agda partfunc.agda |
diffstat | 2 files changed, 31 insertions(+), 30 deletions(-) [+] |
line wrap: on
line diff
--- a/generic-filter.agda Sat Jul 25 16:45:22 2020 +0900 +++ b/generic-filter.agda Sat Jul 25 17:36:27 2020 +0900 @@ -40,7 +40,7 @@ -- -- -open import Data.List +open import Data.List hiding (filter) open import Data.Maybe import OPair @@ -60,29 +60,9 @@ extend : {x : Nat} → (fr : dom f (lift x) ) → dom g (lift x ) feq : {x : Nat} → {fr : dom f (lift x) } → pmap f (lift x) fr ≡ pmap g (lift x) (extend fr) -record FiniteF (p : PFunc (Lift n Nat) (Lift n Two) ) : Set (suc n) where - field - f-max : Nat - f-func : Nat → Two - f-p⊆f : p f⊆ (f-func ↑ f-max) - f-f⊆p : (f-func ↑ f-max) f⊆ p - -open FiniteF - - --- Dense-Gf : {n : Level} → F-Dense (PFunc {n}) (λ x → Lift (suc n) (One {n})) _f⊆_ _f∩_ --- Dense-Gf = record { --- dense = λ x → FiniteF x --- ; d⊆P = lift OneObj --- ; dense-f = λ x → record { dom = {!!} ; pmap = {!!} } --- ; dense-d = λ {p} d → {!!} --- ; dense-p = λ {p} d → {!!} --- } - open _f⊆_ open import Data.Nat.Properties - ODSuc : (y : HOD) → infinite ∋ y → HOD ODSuc y lt = Union (y , (y , y)) @@ -144,14 +124,6 @@ ↑n : (f n : HOD) → ((ω→2 ∋ f ) ∧ (infinite ∋ n)) → HOD ↑n f n lt = 3→Hω2 ( ω→2f f (proj1 lt) 3↑ (ω→nat n (proj2 lt) )) --- the set of finite partial functions from ω to 2 - -Hω2f : Set (suc n) -Hω2f = (Nat → Set n) → Two - -Hω2f→Hω2 : Hω2f → HOD -Hω2f→Hω2 p = {!!} -- record { od = record { def = λ x → (p {!!} ≡ i0 ) ∨ (p {!!} ≡ i1 )}; odmax = {!!} ; <odmax = {!!} } - record CountableOrdinal : Set (suc (suc n)) where field @@ -208,3 +180,32 @@ genf = record { filter = PDHOD C P ; f⊆PL = {!!} ; filter1 = {!!} ; filter2 = {!!} } ; generic = λ D → {!!} } + +open GenericFilter +open Filter + +record Incompatible (P : HOD ) : Set (suc (suc n)) where + field + except : HOD → ( HOD ∧ HOD ) + incompatible : { p : HOD } → P ∋ p → P ∋ proj1 (except p ) → P ∋ proj2 (except p ) + → ( p ⊆ proj1 (except p) ) ∧ ( p ⊆ proj2 (except p) ) + → ∀ ( r : HOD ) → P ∋ r → ¬ (( proj1 (except p) ⊆ r ) ∧ ( proj2 (except p) ⊆ r )) + +lemma725 : (M : CountableHOD ) (C : CountableOrdinal) (P : HOD ) → mhod M ∋ P + → Incompatible P → ¬ ( mhod M ∋ filter ( genf ( P-GenericFilter C P ))) +lemma725 = {!!} + +lemma725-1 : Incompatible HODω2 +lemma725-1 = {!!} + +lemma726 : (C : CountableOrdinal) (P : HOD ) + → Union ( filter ( genf ( P-GenericFilter C HODω2 ))) =h= ω→2 +lemma726 = {!!} + +-- +-- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } +-- + + + +
--- a/partfunc.agda Sat Jul 25 16:45:22 2020 +0900 +++ b/partfunc.agda Sat Jul 25 17:36:27 2020 +0900 @@ -8,7 +8,7 @@ open import logic open import Relation.Binary open import Data.Empty -open import Data.List +open import Data.List hiding (filter) open import Data.Maybe open import Relation.Binary open import Relation.Binary.Core