Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 391:e98b5774d180
generic filter defined
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 Jul 2020 16:45:22 +0900 |
parents | d58edc4133b0 |
children | 55f44ec2a0c6 |
files | generic-filter.agda |
diffstat | 1 files changed, 20 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/generic-filter.agda Sat Jul 25 13:33:53 2020 +0900 +++ b/generic-filter.agda Sat Jul 25 16:45:22 2020 +0900 @@ -173,40 +173,38 @@ open CountableOrdinal open CountableHOD -PGHOD : (i : Nat) → (C : CountableOrdinal) → (p : Ordinal) → HOD -PGHOD i C p = record { od = record { def = λ x → odef (ord→od (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (ord→od p) y → odef (ord→od x) y ) } - ; odmax = ctl→ C i ; <odmax = λ {y} lt → odefo→o< (proj1 lt)} +PGHOD : (i : Nat) → (C : CountableOrdinal) → (P : HOD) → (p : Ordinal) → HOD +PGHOD i C P p = record { od = record { def = λ x → odef P x ∧ odef (ord→od (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (ord→od p) y → odef (ord→od x) y ) } + ; odmax = odmax P ; <odmax = λ {y} lt → <odmax P (proj1 lt) } -next-p : (M : CountableHOD ) (i : Nat) → (C : CountableOrdinal) → (p : Ordinal) → Ordinal -next-p M i C p with ODC.decp O ( PGHOD i C p =h= od∅ ) -next-p M i C p | yes y = p -next-p M i C p | no not = od→ord (ODC.minimal O (PGHOD i C p ) not) +next-p : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (p : Ordinal) → Ordinal +next-p C P i p with ODC.decp O ( PGHOD i C P p =h= od∅ ) +next-p C P i p | yes y = p +next-p C P i p | no not = od→ord (ODC.minimal O (PGHOD i C P p ) not) -data PD (M : CountableHOD ) (C : CountableOrdinal) : (x : Ordinal) (i : Nat) → Set n where - pd0 : PD M C o∅ 0 - pdsuc : {p : Ordinal } {i : Nat} → PD M C p i → PD M C (next-p M i C p) (Suc i) +find-p : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (x : Ordinal) → Ordinal +find-p C P Zero x = x +find-p C P (Suc i) x = find-p C P i ( next-p C P i x ) -record PDN (M : CountableHOD ) (C : CountableOrdinal) (x : Ordinal) : Set n where +record PDN (C : CountableOrdinal) (P : HOD ) (x : Ordinal) : Set n where field - gr : Ordinal - pn<gr : (y : Ordinal) → odef (ord→od x) y → odef (ord→od gr) y - px∈ω : odef (mhod M) x - grx∈ω : odef (mhod M) gr - pdod : PD M C x (mtl← M gr grx∈ω) + gr : Nat + pn<gr : (y : Ordinal) → odef (ord→od x) y → odef (ord→od (find-p C P gr o∅)) y + px∈ω : odef P x open PDN -PDHOD : (M : CountableHOD ) → (C : CountableOrdinal) → HOD -PDHOD M C = record { od = record { def = λ x → PDN M C x } - ; odmax = odmax (mhod M) ; <odmax = λ {y} lt → ordtrans (<odmax (mhod M) (px∈ω lt)) {!!} } where +PDHOD : (C : CountableOrdinal) → (P : HOD ) → HOD +PDHOD C P = record { od = record { def = λ x → PDN C P x } + ; odmax = odmax (Power P) ; <odmax = {!!} } where -- -- p 0 ≡ ∅ -- p (suc n) = if ∃ q ∈ ord→od ( ctl→ n ) ∧ p n ⊆ q → q --- else p n -P-GenericFilter : {M : CountableHOD } → (C : CountableOrdinal) → GenericFilter (mhod M) -P-GenericFilter {M} C = record { - genf = record { filter = PDHOD M C ; f⊆PL = {!!} ; filter1 = {!!} ; filter2 = {!!} } +P-GenericFilter : (C : CountableOrdinal) → (P : HOD ) → GenericFilter P +P-GenericFilter C P = record { + genf = record { filter = PDHOD C P ; f⊆PL = {!!} ; filter1 = {!!} ; filter2 = {!!} } ; generic = λ D → {!!} }