Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 200:57be355d1336
ε-induction again
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Jul 2019 23:50:00 +0900 |
parents | 68eecbb011ef |
children | a1a7caa8b305 |
files | OD.agda |
diffstat | 1 files changed, 8 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 29 20:02:08 2019 +0900 +++ b/OD.agda Mon Jul 29 23:50:00 2019 +0900 @@ -563,27 +563,17 @@ a-choice : OD {suc n} is-in : X ∋ a-choice choice-func' : (X : OD {suc n} ) → (∋-p : (A x : OD {suc n} ) → Dec ( A ∋ x ) ) → ¬ ( X == od∅ ) → choiced X - choice-func' X ∋-p not = lemma-ord (od→ord X) lemma-init - where + choice-func' X ∋-p not = lemma-ord (od→ord X) (subst (λ k → <-not {X} k ) (sym diso) lemma-init ) + where <-not : {X : OD {suc n}} → ( ox : Ordinal {suc n}) → Set (suc n) <-not {X} ox = ( y : Ordinal {suc n}) → ox o< osuc y → ¬ (X ∋ (ord→od y)) + ind : {x : OD} → ({y : OD} → x ∋ y → <-not {X} (od→ord y) → choiced X) → <-not {X} (od→ord x) → choiced X + ind {y} ψ nox with ∋-p X y + ind {y} ψ nox | yes p = record { a-choice = y ; is-in = p } + ind {y} ψ nox | no ¬p = {!!} + lemma-ord : ( x : Ordinal {suc n} ) → (<-not {X} (od→ord (ord→od x))) → choiced X + lemma-ord x = ε-induction {n} {suc (suc n)} { λ x → (<-not {X} (od→ord x)) → choiced X} ind (ord→od x) lemma-init : (y : Ordinal) → od→ord X o< osuc y → ¬ (X ∋ ord→od y) lemma-init y lt lt2 with osuc-≡< lt lemma-init y lt lt2 | case1 refl = o<¬≡ refl ( o<-subst (c<→o< {suc n} {_} {X} lt2) diso refl ) lemma-init y lt lt2 | case2 lt1 = o<> lt1 ( o<-subst (c<→o< lt2) diso refl ) - lemma-ord : ( ox : Ordinal {suc n} ) → <-not {X} ox → choiced X - lemma-ord ox not = lemma1 (lv ox) (ord ox) not where - lemma1 : (lx : Nat) ( ox : OrdinalD lx ) → <-not {X} record {lv = lx ; ord = ox} → choiced X - lemma1 lx ox not with ∋-p X (ord→od record { lv = lx ; ord = ox}) - ... | yes p = record { a-choice = ord→od record { lv = lx ; ord = ox} ; is-in = p } - lemma1 Zero (Φ 0) not | no ¬p = {!!} - lemma1 lx (OSuc lx ox) not | no ¬p = lemma1 lx ox {!!} - lemma1 (Suc lx) (Φ (Suc lx)) not | no ¬p = lemma1 lx (Φ lx) lemmaΦ where - -- not : ( y : Ordinal {suc n}) → (record { lv = Suc lx ; ord = Φ (Suc lx) }) o< osuc y → ¬ (X ∋ (ord→od y)) - -- we also have lemma1 lx any - lemmaΦ : ( y : Ordinal {suc n}) → (record { lv = lx ; ord = Φ lx }) o< osuc y → ¬ (X ∋ (ord→od y)) - lemmaΦ y lt with trio< (record { lv = Suc lx ; ord = Φ (Suc lx) }) (osuc y ) - lemmaΦ y lt | tri< a ¬b ¬c = not y a - -- record { lv = lx ; ord = Φ lx } o< osuc y o< record { lv = Suc lx ; ord = Φ (Suc lx) } - lemmaΦ y lt | tri> ¬a ¬b c = {!!} -