Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 201:a1a7caa8b305
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 30 Jul 2019 01:12:24 +0900 |
parents | 57be355d1336 |
children | ed88384b5102 |
files | OD.agda |
diffstat | 1 files changed, 9 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 29 23:50:00 2019 +0900 +++ b/OD.agda Tue Jul 30 01:12:24 2019 +0900 @@ -568,9 +568,15 @@ <-not : {X : OD {suc n}} → ( ox : Ordinal {suc n}) → Set (suc n) <-not {X} ox = ( y : Ordinal {suc n}) → ox o< osuc y → ¬ (X ∋ (ord→od y)) ind : {x : OD} → ({y : OD} → x ∋ y → <-not {X} (od→ord y) → choiced X) → <-not {X} (od→ord x) → choiced X - ind {y} ψ nox with ∋-p X y - ind {y} ψ nox | yes p = record { a-choice = y ; is-in = p } - ind {y} ψ nox | no ¬p = {!!} + ind {x} ψ nox = lemma (od→ord x) nox where + lemma : (ox : Ordinal {suc n}) → <-not {X} ox → choiced X + lemma ox nox with ∋-p X (ord→od ox) + ... | yes p = record { a-choice = ord→od ox ; is-in = p } + lemma record { lv = Zero ; ord = (Φ 0) } nox | no ¬p = {!!} + lemma record { lv = lx ; ord = (OSuc lx ox) } nox | no ¬p = lemma record { lv = lx ; ord = ox } {!!} + lemma record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } nox | no ¬p = lemma record { lv = lx ; ord = Φ lx } lemma2 where + lemma2 : ( y : Ordinal {suc n}) → record { lv = lx ; ord = Φ lx } o< osuc y → ¬ (X ∋ (ord→od y)) + lemma2 y lt = {!!} lemma-ord : ( x : Ordinal {suc n} ) → (<-not {X} (od→ord (ord→od x))) → choiced X lemma-ord x = ε-induction {n} {suc (suc n)} { λ x → (<-not {X} (od→ord x)) → choiced X} ind (ord→od x) lemma-init : (y : Ordinal) → od→ord X o< osuc y → ¬ (X ∋ ord→od y)