Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 372:8c3b59f583f2
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 19 Jul 2020 19:14:12 +0900 |
parents | e75402b1f7d4 |
children | b4a247f9d940 |
files | filter.agda |
diffstat | 1 files changed, 17 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Sun Jul 19 16:19:24 2020 +0900 +++ b/filter.agda Sun Jul 19 19:14:12 2020 +0900 @@ -168,26 +168,22 @@ extend : (x : Nat) → (fr : restrict f x ) → restrict g x feq : (x : Nat) → (fr : restrict f x ) → map f x fr ≡ map g x (extend x fr) -record _f∩_ (f g : PFunc) : Set (suc n) where - field - pf : PFunc - f< : f f⊆ pf - g< : g f⊆ pf +open _f⊆_ -full-func : Set n -full-func = Nat → Two - -full→PF : (Nat → Two) → PFunc -full→PF f = record { restrict = λ x → One ; map = λ x _ → f x } +_f∩_ : (f g : PFunc) → PFunc +f f∩ g = record { restrict = λ x → (restrict f x ) ∧ (restrict g x ) ∧ ((fr : restrict f x ) → (gr : restrict g x ) → map f x fr ≡ map g x gr) + ; map = λ x p → map f x (proj1 p) } _↑_ : (Nat → Two) → Nat → PFunc f ↑ i = record { restrict = λ x → Lift n (x ≤ i) ; map = λ x _ → f x } -record gf-filter (f : Nat → Two) (p : PFunc ) : Set (suc n) where +record Gf (f : Nat → Two) (p : PFunc ) : Set (suc n) where field gn : Nat f<n : p f⊆ (f ↑ gn) +open Gf + record F-Filter (L : Set (suc n)) (PL : (L → Set (suc n)) → Set n) ( _⊆_ : L → L → Set (suc n)) (_∩_ : L → L → L ) : Set (suc (suc n)) where field filter : L → Set (suc n) @@ -195,13 +191,17 @@ filter1 : { p q : L } → filter p → p ⊆ q → filter q filter2 : { p q : L } → filter p → filter q → filter (p ∩ q) -GF : (Nat → Two ) → F-Filter PFunc (λ x → One) _f⊆_ {!!} +GF : (Nat → Two ) → F-Filter PFunc (λ x → One) _f⊆_ _f∩_ GF f = record { - filter = λ p → gf-filter f p + filter = λ p → Gf f p ; f⊆P = OneObj - ; filter1 = λ {p} {q} fp p⊆q → record { gn = {!!} ; f<n = {!!} } + ; filter1 = λ {p} {q} fp p⊆q → record { gn = gn fp ; f<n = f1 fp p⊆q } ; filter2 = λ {p} {q} fp fq → record { gn = {!!} ; f<n = {!!} } - } + } where + f1 : {p q : PFunc } → (fp : Gf f p ) → ( p⊆q : p f⊆ q ) → q f⊆ (f ↑ gn fp) + f1 {p} {q} fp p⊆q = record { extend = λ x fr → extend (f<n fp) x {!!} ; feq = λ x fr → {!!} } where + f2 : (x : Nat) → x ≤ gn fp + f2 x = ? -- extend (f<n fp) x ? ODSuc : (y : HOD) → infinite ∋ y → HOD ODSuc y lt = Union (y , (y , y)) @@ -247,8 +247,8 @@ -- n : HOD -- ? : Select f (λ x f∋x → ω→nat (π1 f∋x) < ω→nat n -Gf : {f : HOD} → ω→2 ∋ f → HOD -Gf {f} lt = Select HODω2 (λ x H∋x → {!!} ) +-- Gf : {f : HOD} → ω→2 ∋ f → HOD +-- Gf {f} lt = Select HODω2 (λ x H∋x → {!!} ) G : (Nat → Two) → Filter HODω2 G f = record {