Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 371:e75402b1f7d4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 19 Jul 2020 16:19:24 +0900 |
parents | 1425104bb5d8 |
children | 8c3b59f583f2 |
files | filter.agda |
diffstat | 1 files changed, 26 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Sun Jul 19 12:26:17 2020 +0900 +++ b/filter.agda Sun Jul 19 16:19:24 2020 +0900 @@ -165,7 +165,14 @@ record _f⊆_ (f g : PFunc) : Set (suc n) where field - feq : (x : Nat) → (fr : restrict f x ) → (gr : restrict g x ) → map f x fr ≡ map g x gr + extend : (x : Nat) → (fr : restrict f x ) → restrict g x + feq : (x : Nat) → (fr : restrict f x ) → map f x fr ≡ map g x (extend x fr) + +record _f∩_ (f g : PFunc) : Set (suc n) where + field + pf : PFunc + f< : f f⊆ pf + g< : g f⊆ pf full-func : Set n full-func = Nat → Two @@ -176,12 +183,25 @@ _↑_ : (Nat → Two) → Nat → PFunc f ↑ i = record { restrict = λ x → Lift n (x ≤ i) ; map = λ x _ → f x } -record F-Filter (PL : Set n) (L : PL ) ( _⊆_ : PL → PL → Set n) ( _∋_ : PL → PL → Set n) : Set (suc n) where +record gf-filter (f : Nat → Two) (p : PFunc ) : Set (suc n) where + field + gn : Nat + f<n : p f⊆ (f ↑ gn) + +record F-Filter (L : Set (suc n)) (PL : (L → Set (suc n)) → Set n) ( _⊆_ : L → L → Set (suc n)) (_∩_ : L → L → L ) : Set (suc (suc n)) where field - filter : PL - f⊆PL : filter ⊆ L - filter1 : { p q : PL } → q ⊆ L → filter ∋ p → p ⊆ q → filter ∋ q - filter2 : { p q : PL } → filter ∋ p → filter ∋ q → (filter ∋ p) ∧ (filter ∋ q) + filter : L → Set (suc n) + f⊆P : PL filter + filter1 : { p q : L } → filter p → p ⊆ q → filter q + filter2 : { p q : L } → filter p → filter q → filter (p ∩ q) + +GF : (Nat → Two ) → F-Filter PFunc (λ x → One) _f⊆_ {!!} +GF f = record { + filter = λ p → gf-filter f p + ; f⊆P = OneObj + ; filter1 = λ {p} {q} fp p⊆q → record { gn = {!!} ; f<n = {!!} } + ; filter2 = λ {p} {q} fp fq → record { gn = {!!} ; f<n = {!!} } + } ODSuc : (y : HOD) → infinite ∋ y → HOD ODSuc y lt = Union (y , (y , y))