Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1:a63df8c77114
union
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 08 May 2019 11:34:23 +0900 |
parents | e8adb0eb4243 |
children | 5c819f837721 |
files | set-of-agda.agda |
diffstat | 1 files changed, 29 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/set-of-agda.agda Wed May 08 10:35:01 2019 +0900 +++ b/set-of-agda.agda Wed May 08 11:34:23 2019 +0900 @@ -1,7 +1,6 @@ module set-of-agda where open import Level -open import Relation.Binary.HeterogeneousEquality infix 50 _∧_ @@ -21,11 +20,11 @@ infix 60 _∋_ _∈_ -_∋_ : {n : Level} ( A : Set n ) → {a : A} → { B : Set n} → ( b : B ) → Set n -_∋_ A {a} {B} b = a ≅ b +data _∋_ {n : Level} ( A : Set n ) : (a : A ) → Set n where + elem : (a : A) → A ∋ a -_∈_ : {n : Level} { B : Set n } → (b : B ) → ( A : Set n ) → {a : A} → Set n -_∈_ {_} {B} b A {a} = b ≅ a +_∈_ : {n : Level} { A : Set n } → (a : A ) → Set n → Set n +_∈_ {_} {A} a _ = A ∋ a infix 40 _⇔_ @@ -36,5 +35,29 @@ -- ∀ x ∀ y [ ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) ] set-extentionality : {n : Level } {x y : Set n } → { z : x } → ( z ∈ x ⇔ z ∈ y ) → ∀ (w : Set (suc n)) → ( x ∈ w ⇔ y ∈ w ) -set-extentionality = {!!} +proj1 (set-extentionality {n} {x} {y} {z} (z∈x→z∈y × z∈x←z∈y) w) {elem .x} = elem ( elem x ) +proj2 (set-extentionality {n} {x} {y} {z} (z∈x→z∈y × z∈x←z∈y) w) {elem .y} = elem ( elem y ) + +-- Axiom of regularity +-- ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) ) + +open import Relation.Nullary +open import Data.Empty + +data ∅ : Set where + +infix 50 _∩_ +record _∩_ {n m : Level} (A : Set n) ( B : Set m) : Set (n ⊔ m) where + field + inL : {x : A } → x ∈ A + inR : {x : B } → x ∈ B + +open _∩_ + +-- lemma : {n m : Level} (A : Set n) ( B : Set m) → (a : A ) → a ∈ (A ∩ B) +-- lemma A B a A∩B = inL A∩B + +-- set-regularity : {n : Level } → ( x : Set n) → ( ¬ ( x ⇔ ∅ ) ) → { y : x } → ( y ∩ x ⇔ ∅ ) +-- set-regularity = {!!} +