Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 0:e8adb0eb4243
Set theory in Agda
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 08 May 2019 10:35:01 +0900 |
parents | |
children | a63df8c77114 |
files | set-of-agda.agda |
diffstat | 1 files changed, 40 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/set-of-agda.agda Wed May 08 10:35:01 2019 +0900 @@ -0,0 +1,40 @@ +module set-of-agda where + +open import Level +open import Relation.Binary.HeterogeneousEquality + +infix 50 _∧_ + +record _∧_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where + constructor _×_ + field + proj1 : A + proj2 : B + +open _∧_ + +infix 50 _∨_ + +data _∨_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where + case1 : A → A ∨ B + case2 : B → A ∨ B + +infix 60 _∋_ _∈_ + +_∋_ : {n : Level} ( A : Set n ) → {a : A} → { B : Set n} → ( b : B ) → Set n +_∋_ A {a} {B} b = a ≅ b + +_∈_ : {n : Level} { B : Set n } → (b : B ) → ( A : Set n ) → {a : A} → Set n +_∈_ {_} {B} b A {a} = b ≅ a + +infix 40 _⇔_ + +_⇔_ : {n : Level} (A B : Set n) → Set n +A ⇔ B = ( ∀ {x : A } → x ∈ B ) ∧ ( ∀ {x : B } → x ∈ A ) + +-- Axiom of extentionality +-- ∀ x ∀ y [ ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) ] + +set-extentionality : {n : Level } {x y : Set n } → { z : x } → ( z ∈ x ⇔ z ∈ y ) → ∀ (w : Set (suc n)) → ( x ∈ w ⇔ y ∈ w ) +set-extentionality = {!!} +