Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1274:b15dd4438d50
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 03 Apr 2023 15:02:36 +0900 |
parents | 30540f151ae0 |
children | e7743ac5a070 |
files | src/Tychonoff.agda src/ZProduct.agda |
diffstat | 2 files changed, 89 insertions(+), 55 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Sun Apr 02 12:41:06 2023 +0900 +++ b/src/Tychonoff.agda Mon Apr 03 15:02:36 2023 +0900 @@ -35,7 +35,7 @@ open import filter O open import ZProduct O open import Topology O -open import maximum-filter O +-- open import maximum-filter O open Filter open Topology @@ -176,11 +176,11 @@ -- otherwise the check requires a minute -- maxf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (λ x → x) (F CSX fp) - maxf {X} 0<X CSX fp = F→Maximum {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp) + maxf {X} 0<X CSX fp = ? -- F→Maximum {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp) mf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → Filter {Power P} {P} (λ x → x) mf {X} 0<X CSX fp = MaximumFilter.mf (maxf 0<X CSX fp) ultraf : {X : Ordinal} → (0<X : o∅ o< X ) → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ultra-filter ( mf 0<X CSX fp) - ultraf {X} 0<X CSX fp = F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp) + ultraf {X} 0<X CSX fp = ? -- F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp) -- -- so it has a limit as a limit of UIP -- @@ -345,6 +345,17 @@ postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) +FilterQP : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) + → Filter {Power (ZFP Q P)} {ZFP Q P} (λ x → x) +FilterQP {P} {Q} F = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = ? } + +projection-of-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) + → Filter {Power P} {P} (λ x → x) +projection-of-filter = ? + +projection-of-ultra-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F) + → ultra-filter (projection-of-filter F) +projection-of-ultra-filter = ? Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (ProductTopology TP TQ) Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) uflPQ ) where
--- a/src/ZProduct.agda Sun Apr 02 12:41:06 2023 +0900 +++ b/src/ZProduct.agda Mon Apr 03 15:02:36 2023 +0900 @@ -104,48 +104,6 @@ ZFPair : OD ZFPair = record { def = λ x → ord-pair x } --- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) --- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y' --- eq-pair refl refl = HE.refl - -pi1 : { p : Ordinal } → ord-pair p → Ordinal -pi1 ( pair x y) = x - -π1 : { p : HOD } → def ZFPair (& p) → HOD -π1 lt = * (pi1 lt ) - -pi2 : { p : Ordinal } → ord-pair p → Ordinal -pi2 ( pair x y ) = y - -π2 : { p : HOD } → def ZFPair (& p) → HOD -π2 lt = * (pi2 lt ) - -op-cons : ( ox oy : Ordinal ) → def ZFPair (& ( < * ox , * oy > )) -op-cons ox oy = pair ox oy - -def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x -def-subst df refl refl = df - -p-cons : ( x y : HOD ) → def ZFPair (& ( < x , y >)) -p-cons x y = def-subst {_} {_} {ZFPair} {& (< x , y >)} (pair (& x) ( & y )) refl ( - let open ≡-Reasoning in begin - & < * (& x) , * (& y) > - ≡⟨ cong₂ (λ j k → & < j , k >) *iso *iso ⟩ - & < x , y > - ∎ ) - -op-iso : { op : Ordinal } → (q : ord-pair op ) → & < * (pi1 q) , * (pi2 q) > ≡ op -op-iso (pair ox oy) = refl - -p-iso : { x : HOD } → (p : def ZFPair (& x) ) → < π1 p , π2 p > ≡ x -p-iso {x} p = ord≡→≡ (op-iso p) - -p-pi1 : { x y : HOD } → (p : def ZFPair (& < x , y >) ) → π1 p ≡ x -p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) )) - -p-pi2 : { x y : HOD } → (p : def ZFPair (& < x , y >) ) → π2 p ≡ y -p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p))) - _⊗_ : (A B : HOD) → HOD A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) )) @@ -196,16 +154,6 @@ ZFP⊆⊗ : {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x ZFP⊆⊗ {A} {B} {px} ( ab-pair {a} {b} ax by ) = product→ (d→∋ A ax) (d→∋ B by) -⊗⊆ZFPair : {A B x : HOD} → ( A ⊗ B ) ∋ x → def ZFPair (& x) -⊗⊆ZFPair {A} {B} {x} record { owner = owner ; ao = record { z = a ; az = aa ; x=ψz = x=ψa } ; ox = ox } = zfp01 where - zfp02 : Replace A (λ z → < z , * a >) ≡ * owner - zfp02 = subst₂ ( λ j k → j ≡ k ) *iso refl (sym (cong (*) x=ψa )) - zfp01 : def ZFPair (& x) - zfp01 with subst (λ k → odef k (& x) ) (sym zfp02) ox - ... | record { z = b ; az = ab ; x=ψz = x=ψb } = subst (λ k → def ZFPair k) (cong (&) zfp00) (op-cons b a ) where - zfp00 : < * b , * a > ≡ x - zfp00 = sym ( subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) x=ψb) ) - ⊗⊆ZFP : {A B x : HOD} → ( A ⊗ B ) ∋ x → odef (ZFP A B) (& x) ⊗⊆ZFP {A} {B} {x} record { owner = owner ; ao = record { z = a ; az = ba ; x=ψz = x=ψa } ; ox = ox } = zfp01 where zfp02 : Replace A (λ z → < z , * a >) ≡ * owner @@ -228,6 +176,81 @@ ZFProj2-iso {P} {Q} {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d) +record Func (A B : HOD) : Set n where + field + func : {x : Ordinal } → odef A x → Ordinal + is-func : {x : Ordinal } → (ax : odef A x) → odef B (func ax ) + +data FuncHOD (A B : HOD) : (x : Ordinal) → Set n where + felm : (F : Func A B) → FuncHOD A B (& ( Replace' A ( λ x ax → < x , (* (Func.func F {& x} ax )) > ))) + +FuncHOD→F : {A B : HOD} {x : Ordinal} → FuncHOD A B x → Func A B +FuncHOD→F {A} {B} (felm F) = F + +FuncHOD=R : {A B : HOD} {x : Ordinal} → (fc : FuncHOD A B x) → (* x) ≡ Replace' A ( λ x ax → < x , (* (Func.func (FuncHOD→F fc) ax)) > ) +FuncHOD=R {A} {B} (felm F) = *iso + +-- +-- Set of All function from A to B +-- + +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + +Funcs : (A B : HOD) → HOD +Funcs A B = record { od = record { def = λ x → FuncHOD A B x } ; odmax = osuc (& (ZFP A B)) + ; <odmax = λ {y} px → subst ( λ k → k o≤ (& (ZFP A B)) ) &iso (⊆→o≤ (lemma1 px)) } where + lemma1 : {y : Ordinal } → FuncHOD A B y → {x : Ordinal} → odef (* y) x → odef (ZFP A B) x + lemma1 {y} (felm F) {x} yx with subst (λ k → odef k x) *iso yx + ... | record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → ZFProduct A B k) + (sym x=ψz) lemma4 where + lemma4 : ZFProduct A B (& < * z , * (Func.func F (subst (λ k → odef A k) (sym &iso) az)) > ) + lemma4 = ab-pair az (Func.is-func F (subst (λ k → odef A k) (sym &iso) az)) + +record Injection (A B : Ordinal ) : Set n where + field + i→ : (x : Ordinal ) → odef (* A) x → Ordinal + iB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( i→ x lt ) + iiso : (x y : Ordinal ) → ( ltx : odef (* A) x ) ( lty : odef (* A) y ) → i→ x ltx ≡ i→ y lty → x ≡ y + +record OrdBijection (A B : Ordinal ) : Set n where + field + fun← : (x : Ordinal ) → odef (* A) x → Ordinal + fun→ : (x : Ordinal ) → odef (* B) x → Ordinal + funB : (x : Ordinal ) → ( lt : odef (* A) x ) → odef (* B) ( fun← x lt ) + funA : (x : Ordinal ) → ( lt : odef (* B) x ) → odef (* A) ( fun→ x lt ) + fiso← : (x : Ordinal ) → ( lt : odef (* B) x ) → fun← ( fun→ x lt ) ( funA x lt ) ≡ x + fiso→ : (x : Ordinal ) → ( lt : odef (* A) x ) → fun→ ( fun← x lt ) ( funB x lt ) ≡ x + +ordbij-refl : { a b : Ordinal } → a ≡ b → OrdBijection a b +ordbij-refl {a} refl = record { + fun← = λ x _ → x + ; fun→ = λ x _ → x + ; funB = λ x lt → lt + ; funA = λ x lt → lt + ; fiso← = λ x lt → refl + ; fiso→ = λ x lt → refl + } + +ZFPsym : (A B : HOD) → OrdBijection (& (ZFP A B)) (& (ZFP B A)) +ZFPsym A B = record { + fun← = λ xy ab → & < * (zπ2 (subst (λ k → odef k xy) *iso ab)) , * (zπ1 (subst (λ k → odef k xy) *iso ab)) > + ; fun→ = λ xy ba → & < * (zπ2 (subst (λ k → odef k xy) *iso ba)) , * (zπ1 (subst (λ k → odef k xy) *iso ba)) > + ; funB = λ xy ab → subst (λ k → odef k (& + < * (zπ2 (subst (λ k → odef k xy) *iso ab)) , * (zπ1 (subst (λ k → odef k xy) *iso ab)) >)) + (sym *iso) ( ab-pair (zp2 (subst (λ k → odef k xy) *iso ab)) (zp1 (subst (λ k → odef k xy) *iso ab)) ) + ; funA = λ xy ba → subst (λ k → odef k (& + < * (zπ2 (subst (λ k → odef k xy) *iso ba)) , * (zπ1 (subst (λ k → odef k xy) *iso ba)) >)) + (sym *iso) ( ab-pair (zp2 (subst (λ k → odef k xy) *iso ba)) (zp1 (subst (λ k → odef k xy) *iso ba)) ) + ; fiso← = λ xy ba → trans (cong₂ (λ j k → & < * j , * k > ) (proj2 (zp-iso0 {A} {B} {zπ2 (subst (λ k → odef k xy) *iso ba)} {zπ1 (subst (λ k → odef k xy) *iso ba)} (lemma1 ba) )) + ? ) ( zp-iso (subst (λ k → odef k xy) *iso ba )) + ; fiso→ = λ xy ab → trans (cong₂ (λ j k → & < * j , * k > ) (proj2 (zp-iso0 ? )) (proj1 (zp-iso0 ? )) ) ( zp-iso (subst (λ k → odef k xy) *iso ab )) + } where + lemma1 : {A B : HOD} {xy : Ordinal} → (ba : odef (* (& (ZFP B A))) xy) → odef (ZFP A B) ( + & < * (zπ2 (subst (λ k → odef k xy) *iso ba)) , * (zπ1 (subst (λ k → odef k xy) *iso ba)) > ) + lemma1 {A} {B} {xy} ba = ? -- with subst (λ k → odef k xy ) *iso ba + -- ... | ab-pair ax by = ? + + ZFP∩ : {A B C : HOD} → ( ZFP (A ∩ B) C ≡ ZFP A C ∩ ZFP B C ) ∧ ( ZFP C (A ∩ B) ≡ ZFP C A ∩ ZFP C B ) proj1 (ZFP∩ {A} {B} {C} ) = ==→o≡ record { eq→ = zfp00 ; eq← = zfp01 } where zfp00 : {x : Ordinal} → ZFProduct (A ∩ B) C x → odef (ZFP A C ∩ ZFP B C) x