Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 245:f0f9aede682f
new assumption
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 26 Aug 2019 02:34:14 +0900 |
parents | 0bd498de2ef4 |
children | 3506f53c7d83 |
files | cardinal.agda |
diffstat | 1 files changed, 7 insertions(+), 35 deletions(-) [+] |
line wrap: on
line diff
--- a/cardinal.agda Mon Aug 26 02:07:44 2019 +0900 +++ b/cardinal.agda Mon Aug 26 02:34:14 2019 +0900 @@ -30,11 +30,6 @@ data ord-pair : (p : Ordinal) → Set n where pair : (x y : Ordinal ) → ord-pair ( od→ord ( < ord→od x , ord→od y > ) ) -lemma33 : { p q : Ordinal } → p ≡ q → ord-pair p ≡ ord-pair q -lemma33 refl = refl - - - ZFProduct : OD ZFProduct = record { def = λ x → ord-pair x } @@ -66,44 +61,21 @@ eq-prod : { x x' y y' : OD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > eq-prod refl refl = refl -prod<x : { x y y' : OD } → od→ord y o< od→ord y' → od→ord (< x , y > ) o< od→ord (< x , y' > ) -prod<x {x} {y} {y'} y<y' with trio< (od→ord x) (od→ord y) -prod<x {x} {y} {y'} y<y' | tri≈ ¬a refl ¬c = ? where - lemma : ? - lemma = ? -prod<x {x} {y} {y'} y<y' | tri< a ¬b ¬c = {!!} -prod<x {x} {y} {y'} y<y' | tri> ¬a ¬b c = {!!} - -eq-prod' : { x y y' : OD } → < x , y > ≡ < x , y' > → y ≡ y' -eq-prod' {x} {y} {y'} eq with trio< (od→ord y) (od→ord y') -eq-prod' {x} {y} {y'} eq | tri≈ ¬a b ¬c = subst₂ (λ j k → j ≡ k ) oiso oiso ( cong ( λ k → ord→od k ) b ) -eq-prod' {x} {y} {y'} eq | tri< a ¬b ¬c = {!!} -eq-prod' {x} {y} {y'} eq | tri> ¬a ¬b c = {!!} - --- def-eq : { P Q p q : OD } → P ≡ Q → p ≡ q → (pt : P ∋ p ) → (qt : Q ∋ q ) → pt ≅ qt --- def-eq refl refl _ _ = ? +postulate + def-eq : { P Q p q : OD } → P ≡ Q → p ≡ q → (pt : P ∋ p ) → (qt : Q ∋ q ) → pt ≅ qt lemma34 : { p q : Ordinal } → (x : ord-pair p ) → (y : ord-pair q ) → p ≡ q → x ≅ y -lemma34 {p} (pair x0 x1) (pair y0 y1) eq = {!!} - -prod-eq : { p q : OD } → p ≡ q → (pt : ZFProduct ∋ p ) → (qt : ZFProduct ∋ q ) → pt ≅ qt -prod-eq refl s t = {!!} where - lemma : {P : Ordinal } → ( pt qt : ord-pair P ) → pt ≅ qt - lemma = {!!} +lemma34 {p} {q} x y eq = {!!} where + lemma : (pt : ZFProduct ∋ ord→od p ) → (qt : ZFProduct ∋ ord→od q ) → p ≡ q → pt ≅ qt + lemma pt qt eq = def-eq {ZFProduct} {ZFProduct} refl {!!} {!!} {!!} π1-cong : { p q : OD } → p ≡ q → (pt : ZFProduct ∋ p ) → (qt : ZFProduct ∋ q ) → π1 pt ≅ π1 qt -π1-cong {p} {q} refl s t = HE.cong (λ k → pi1 k ) (prod-eq refl s t ) - -Tlemma : { x y x' y' : Ordinal } → (prod : ord-pair (od→ord < ord→od x , ord→od y >)) - → (prod' : ord-pair (od→ord < ord→od x' , ord→od y' >)) → x ≡ x' → y ≡ y' → prod ≅ prod' -Tlemma prod prod' refl refl = lemma prod prod' refl where - lemma : { p q : Ordinal } → (prod : ord-pair p) → (prod1 : ord-pair q) → p ≡ q → prod ≅ prod1 - lemma (pair x y) (pair x' y') eq = {!!} +π1-cong {p} {q} refl s t = HE.cong (λ k → pi1 k ) (def-eq {ZFProduct} {ZFProduct} refl refl s t ) π1--iso : { x y : OD } → (p : ZFProduct ∋ < x , y > ) → π1 p ≡ od→ord x π1--iso {x} {y} p = {!!} where lemma1 : ( ox oy op : Ordinal ) → (p : ord-pair op) → op ≡ od→ord ( < ord→od ox , ord→od oy >) → p ≅ pair ox oy - lemma1 ox oy op (pair x' y') eq = {!!} + lemma1 ox oy op (pair x' y') eq = lemma34 {!!} {!!} {!!} lemma : ( ox oy op : Ordinal ) → (p : ord-pair op ) → op ≡ od→ord ( < ord→od ox , ord→od oy > ) → pi1 p ≡ ox lemma ox oy op (pair ox' oy') eq = {!!}