Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 244:0bd498de2ef4
Product
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 26 Aug 2019 02:07:44 +0900 |
parents | f97a2e4df451 |
children | f0f9aede682f |
files | cardinal.agda |
diffstat | 1 files changed, 38 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/cardinal.agda Sun Aug 25 23:13:31 2019 +0900 +++ b/cardinal.agda Mon Aug 26 02:07:44 2019 +0900 @@ -30,6 +30,11 @@ data ord-pair : (p : Ordinal) → Set n where pair : (x y : Ordinal ) → ord-pair ( od→ord ( < ord→od x , ord→od y > ) ) +lemma33 : { p q : Ordinal } → p ≡ q → ord-pair p ≡ ord-pair q +lemma33 refl = refl + + + ZFProduct : OD ZFProduct = record { def = λ x → ord-pair x } @@ -61,10 +66,33 @@ eq-prod : { x x' y y' : OD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > eq-prod refl refl = refl +prod<x : { x y y' : OD } → od→ord y o< od→ord y' → od→ord (< x , y > ) o< od→ord (< x , y' > ) +prod<x {x} {y} {y'} y<y' with trio< (od→ord x) (od→ord y) +prod<x {x} {y} {y'} y<y' | tri≈ ¬a refl ¬c = ? where + lemma : ? + lemma = ? +prod<x {x} {y} {y'} y<y' | tri< a ¬b ¬c = {!!} +prod<x {x} {y} {y'} y<y' | tri> ¬a ¬b c = {!!} + +eq-prod' : { x y y' : OD } → < x , y > ≡ < x , y' > → y ≡ y' +eq-prod' {x} {y} {y'} eq with trio< (od→ord y) (od→ord y') +eq-prod' {x} {y} {y'} eq | tri≈ ¬a b ¬c = subst₂ (λ j k → j ≡ k ) oiso oiso ( cong ( λ k → ord→od k ) b ) +eq-prod' {x} {y} {y'} eq | tri< a ¬b ¬c = {!!} +eq-prod' {x} {y} {y'} eq | tri> ¬a ¬b c = {!!} + +-- def-eq : { P Q p q : OD } → P ≡ Q → p ≡ q → (pt : P ∋ p ) → (qt : Q ∋ q ) → pt ≅ qt +-- def-eq refl refl _ _ = ? + +lemma34 : { p q : Ordinal } → (x : ord-pair p ) → (y : ord-pair q ) → p ≡ q → x ≅ y +lemma34 {p} (pair x0 x1) (pair y0 y1) eq = {!!} + +prod-eq : { p q : OD } → p ≡ q → (pt : ZFProduct ∋ p ) → (qt : ZFProduct ∋ q ) → pt ≅ qt +prod-eq refl s t = {!!} where + lemma : {P : Ordinal } → ( pt qt : ord-pair P ) → pt ≅ qt + lemma = {!!} + π1-cong : { p q : OD } → p ≡ q → (pt : ZFProduct ∋ p ) → (qt : ZFProduct ∋ q ) → π1 pt ≅ π1 qt -π1-cong {p} {q} refl s t = HE.cong (λ k → pi1 k ) (lemma s t refl ) where - lemma : { op oq : Ordinal } → (P : ord-pair op ) → (Q : ord-pair oq ) → op ≡ oq → P ≅ Q - lemma (pair x y ) (pair x' y') eq = eq-pair {!!} {!!} +π1-cong {p} {q} refl s t = HE.cong (λ k → pi1 k ) (prod-eq refl s t ) Tlemma : { x y x' y' : Ordinal } → (prod : ord-pair (od→ord < ord→od x , ord→od y >)) → (prod' : ord-pair (od→ord < ord→od x' , ord→od y' >)) → x ≡ x' → y ≡ y' → prod ≅ prod' @@ -72,6 +100,13 @@ lemma : { p q : Ordinal } → (prod : ord-pair p) → (prod1 : ord-pair q) → p ≡ q → prod ≅ prod1 lemma (pair x y) (pair x' y') eq = {!!} +π1--iso : { x y : OD } → (p : ZFProduct ∋ < x , y > ) → π1 p ≡ od→ord x +π1--iso {x} {y} p = {!!} where + lemma1 : ( ox oy op : Ordinal ) → (p : ord-pair op) → op ≡ od→ord ( < ord→od ox , ord→od oy >) → p ≅ pair ox oy + lemma1 ox oy op (pair x' y') eq = {!!} + lemma : ( ox oy op : Ordinal ) → (p : ord-pair op ) → op ≡ od→ord ( < ord→od ox , ord→od oy > ) → pi1 p ≡ ox + lemma ox oy op (pair ox' oy') eq = {!!} + p-iso : { x : OD } → {p : ZFProduct ∋ x } → < ord→od (π1 p) , ord→od (π2 p) > ≡ x p-iso {x} {p} with p-cons (ord→od (π1 p)) (ord→od (π2 p)) ... | t = {!!}