Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 243:f97a2e4df451
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 25 Aug 2019 23:13:31 +0900 |
parents | c10048d69614 |
children | 0bd498de2ef4 |
files | cardinal.agda |
diffstat | 1 files changed, 20 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/cardinal.agda Sun Aug 25 18:44:41 2019 +0900 +++ b/cardinal.agda Sun Aug 25 23:13:31 2019 +0900 @@ -53,36 +53,29 @@ od→ord < x , y > ∎ ) -π1-iso : { x y : OD } → π1 ( p-cons x y ) ≡ od→ord x -π1-iso {x} {y} = {!!} where - lemma : {ox oy : Ordinal} → pi1 ( pair ox oy ) ≡ ox - lemma = refl - lemma2 : {ox oy : Ordinal} → - def-subst {ZFProduct} {_} (pair (od→ord (ord→od ox)) (od→ord (ord→od oy))) refl (trans (cong₂ (λ j k → od→ord < j , k >) oiso oiso) refl) ≡ pair ox oy - lemma2 {ox} {oy} = let open ≡-Reasoning in begin - def-subst {ZFProduct} {_} (pair (od→ord (ord→od ox)) (od→ord (ord→od oy))) refl (trans (cong₂ (λ j k → od→ord < j , k >) oiso oiso) refl) - ≡⟨ ? ⟩ - pair ox oy - ∎ - lemma1 : {ox oy : Ordinal} → π1 ( p-cons (ord→od ox) (ord→od oy) ) ≡ ox - lemma1 {ox} {oy} = let open ≡-Reasoning in begin - π1 ( p-cons (ord→od ox) (ord→od oy) ) - ≡⟨⟩ - pi1 (pair (pi1 (def-subst {ZFProduct} {_} (pair (od→ord (ord→od ox)) (od→ord (ord→od oy))) refl (trans (cong₂ (λ j k → od→ord < j , k >) oiso oiso) refl))) oy ) - ≡⟨ cong (λ k → pi1 k) lemma2 ⟩ - pi1 (pair ox oy ) - ≡⟨ lemma {ox} {oy} ⟩ - ox - ∎ +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + +eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y' +eq-pair refl refl = HE.refl + +eq-prod : { x x' y y' : OD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > +eq-prod refl refl = refl + +π1-cong : { p q : OD } → p ≡ q → (pt : ZFProduct ∋ p ) → (qt : ZFProduct ∋ q ) → π1 pt ≅ π1 qt +π1-cong {p} {q} refl s t = HE.cong (λ k → pi1 k ) (lemma s t refl ) where + lemma : { op oq : Ordinal } → (P : ord-pair op ) → (Q : ord-pair oq ) → op ≡ oq → P ≅ Q + lemma (pair x y ) (pair x' y') eq = eq-pair {!!} {!!} + +Tlemma : { x y x' y' : Ordinal } → (prod : ord-pair (od→ord < ord→od x , ord→od y >)) + → (prod' : ord-pair (od→ord < ord→od x' , ord→od y' >)) → x ≡ x' → y ≡ y' → prod ≅ prod' +Tlemma prod prod' refl refl = lemma prod prod' refl where + lemma : { p q : Ordinal } → (prod : ord-pair p) → (prod1 : ord-pair q) → p ≡ q → prod ≅ prod1 + lemma (pair x y) (pair x' y') eq = {!!} p-iso : { x : OD } → {p : ZFProduct ∋ x } → < ord→od (π1 p) , ord→od (π2 p) > ≡ x -p-iso {x} {p} = pi p pc where - pc : ZFProduct ∋ < ord→od (π1 p) , ord→od (π2 p) > - pc = p-cons (ord→od (π1 p)) (ord→od (π2 p)) - pi : { prod prod1 : Ordinal } → ord-pair prod → ord-pair prod1 → {!!} - pi (pair p1 p2) (pair q1 q2) = {!!} +p-iso {x} {p} with p-cons (ord→od (π1 p)) (ord→od (π2 p)) +... | t = {!!} - ∋-p : (A x : OD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p ( A ∋ x )