Mercurial > hg > Members > kono > Proof > automaton
annotate automaton-in-agda/src/finiteSetUtil.agda @ 330:407684f806e4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 16 Nov 2022 17:43:10 +0900 |
parents | 91781b7c65a8 |
children | 78e094559ceb |
rev | line source |
---|---|
163 | 1 {-# OPTIONS --allow-unsolved-metas #-} |
2 | |
3 module finiteSetUtil where | |
141 | 4 |
5 open import Data.Nat hiding ( _≟_ ) | |
278
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
6 open import Data.Fin renaming ( _<_ to _<<_ ; _>_ to _f>_ ; _≟_ to _f≟_ ) hiding (_≤_ ) |
283 | 7 open import Data.Fin.Properties hiding ( <-trans ) renaming ( <-cmp to <-fcmp ) |
141 | 8 open import Data.Empty |
9 open import Relation.Nullary | |
10 open import Relation.Binary.Definitions | |
11 open import Relation.Binary.PropositionalEquality | |
12 open import logic | |
13 open import nat | |
14 open import finiteSet | |
163 | 15 open import fin |
141 | 16 open import Data.Nat.Properties as NatP hiding ( _≟_ ) |
17 open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) | |
18 | |
163 | 19 record Found ( Q : Set ) (p : Q → Bool ) : Set where |
20 field | |
21 found-q : Q | |
22 found-p : p found-q ≡ true | |
23 | |
264 | 24 open Bijection |
25 | |
268 | 26 open import Axiom.Extensionality.Propositional |
27 open import Level hiding (suc ; zero) | |
28 postulate f-extensionality : { n : Level} → Axiom.Extensionality.Propositional.Extensionality n n -- (Level.suc n) | |
29 | |
163 | 30 module _ {Q : Set } (F : FiniteSet Q) where |
31 open FiniteSet F | |
268 | 32 equal?-refl : { x : Q } → equal? x x ≡ true |
33 equal?-refl {x} with F←Q x ≟ F←Q x | |
34 ... | yes refl = refl | |
35 ... | no ne = ⊥-elim (ne refl) | |
163 | 36 equal→refl : { x y : Q } → equal? x y ≡ true → x ≡ y |
37 equal→refl {q0} {q1} eq with F←Q q0 ≟ F←Q q1 | |
38 equal→refl {q0} {q1} refl | yes eq = begin | |
39 q0 | |
40 ≡⟨ sym ( finiso→ q0) ⟩ | |
41 Q←F (F←Q q0) | |
42 ≡⟨ cong (λ k → Q←F k ) eq ⟩ | |
43 Q←F (F←Q q1) | |
264 | 44 ≡⟨ finiso→ q1 ⟩ |
163 | 45 q1 |
46 ∎ where open ≡-Reasoning | |
318 | 47 eqP : (x y : Q) → Dec ( x ≡ y ) |
48 eqP x y with F←Q x ≟ F←Q y | |
49 ... | yes eq = yes (subst₂ (λ j k → j ≡ k ) (finiso→ x) (finiso→ y) (cong Q←F eq) ) | |
50 ... | no n = no (λ eq → n (cong F←Q eq)) | |
163 | 51 End : (m : ℕ ) → (p : Q → Bool ) → Set |
52 End m p = (i : Fin finite) → m ≤ toℕ i → p (Q←F i ) ≡ false | |
53 first-end : ( p : Q → Bool ) → End finite p | |
54 first-end p i i>n = ⊥-elim (nat-≤> i>n (fin<n {finite} {i}) ) | |
55 next-end : {m : ℕ } → ( p : Q → Bool ) → End (suc m) p | |
56 → (m<n : m < finite ) → p (Q←F (fromℕ< m<n )) ≡ false | |
57 → End m p | |
58 next-end {m} p prev m<n np i m<i with NatP.<-cmp m (toℕ i) | |
59 next-end p prev m<n np i m<i | tri< a ¬b ¬c = prev i a | |
60 next-end p prev m<n np i m<i | tri> ¬a ¬b c = ⊥-elim ( nat-≤> m<i c ) | |
61 next-end {m} p prev m<n np i m<i | tri≈ ¬a b ¬c = subst ( λ k → p (Q←F k) ≡ false) (m<n=i i b m<n ) np where | |
62 m<n=i : {n : ℕ } (i : Fin n) {m : ℕ } → m ≡ (toℕ i) → (m<n : m < n ) → fromℕ< m<n ≡ i | |
264 | 63 m<n=i i refl m<n = fromℕ<-toℕ i m<n |
163 | 64 found : { p : Q → Bool } → (q : Q ) → p q ≡ true → exists p ≡ true |
65 found {p} q pt = found1 finite (NatP.≤-refl ) ( first-end p ) where | |
66 found1 : (m : ℕ ) (m<n : m Data.Nat.≤ finite ) → ((i : Fin finite) → m ≤ toℕ i → p (Q←F i ) ≡ false ) → exists1 m m<n p ≡ true | |
67 found1 0 m<n end = ⊥-elim ( ¬-bool (subst (λ k → k ≡ false ) (cong (λ k → p k) (finiso→ q) ) (end (F←Q q) z≤n )) pt ) | |
68 found1 (suc m) m<n end with bool-≡-? (p (Q←F (fromℕ< m<n))) true | |
264 | 69 found1 (suc m) m<n end | yes eq = subst (λ k → k \/ exists1 m (<to≤ m<n) p ≡ true ) (sym eq) (bool-or-4 {exists1 m (<to≤ m<n) p} ) |
163 | 70 found1 (suc m) m<n end | no np = begin |
264 | 71 p (Q←F (fromℕ< m<n)) \/ exists1 m (<to≤ m<n) p |
163 | 72 ≡⟨ bool-or-1 (¬-bool-t np ) ⟩ |
264 | 73 exists1 m (<to≤ m<n) p |
74 ≡⟨ found1 m (<to≤ m<n) (next-end p end m<n (¬-bool-t np )) ⟩ | |
163 | 75 true |
76 ∎ where open ≡-Reasoning | |
268 | 77 not-found : { p : Q → Bool } → ( (q : Q ) → p q ≡ false ) → exists p ≡ false |
78 not-found {p} pn = not-found2 finite NatP.≤-refl where | |
79 not-found2 : (m : ℕ ) → (m<n : m Data.Nat.≤ finite ) → exists1 m m<n p ≡ false | |
80 not-found2 zero _ = refl | |
81 not-found2 ( suc m ) m<n with pn (Q←F (fromℕ< {m} {finite} m<n)) | |
82 not-found2 (suc m) m<n | eq = begin | |
83 p (Q←F (fromℕ< m<n)) \/ exists1 m (<to≤ m<n) p | |
84 ≡⟨ bool-or-1 eq ⟩ | |
85 exists1 m (<to≤ m<n) p | |
86 ≡⟨ not-found2 m (<to≤ m<n) ⟩ | |
87 false | |
88 ∎ where open ≡-Reasoning | |
89 found← : { p : Q → Bool } → exists p ≡ true → Found Q p | |
90 found← {p} exst = found2 finite NatP.≤-refl (first-end p ) where | |
91 found2 : (m : ℕ ) (m<n : m Data.Nat.≤ finite ) → End m p → Found Q p | |
92 found2 0 m<n end = ⊥-elim ( ¬-bool (not-found (λ q → end (F←Q q) z≤n ) ) (subst (λ k → exists k ≡ true) (sym lemma) exst ) ) where | |
93 lemma : (λ z → p (Q←F (F←Q z))) ≡ p | |
94 lemma = f-extensionality ( λ q → subst (λ k → p k ≡ p q ) (sym (finiso→ q)) refl ) | |
95 found2 (suc m) m<n end with bool-≡-? (p (Q←F (fromℕ< m<n))) true | |
96 found2 (suc m) m<n end | yes eq = record { found-q = Q←F (fromℕ< m<n) ; found-p = eq } | |
97 found2 (suc m) m<n end | no np = | |
98 found2 m (<to≤ m<n) (next-end p end m<n (¬-bool-t np )) | |
99 not-found← : { p : Q → Bool } → exists p ≡ false → (q : Q ) → p q ≡ false | |
100 not-found← {p} np q = ¬-bool-t ( contra-position {_} {_} {_} {exists p ≡ true} (found q) (λ ep → ¬-bool np ep ) ) | |
101 | |
163 | 102 |
103 | |
264 | 104 iso-fin : {A B : Set} → FiniteSet A → Bijection A B → FiniteSet B |
141 | 105 iso-fin {A} {B} fin iso = record { |
330 | 106 Q←F = λ f → fun→ iso ( FiniteSet.Q←F fin f ) |
264 | 107 ; F←Q = λ b → FiniteSet.F←Q fin (fun← iso b ) |
108 ; finiso→ = finiso→ | |
109 ; finiso← = finiso← | |
141 | 110 } where |
264 | 111 finiso→ : (q : B) → fun→ iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (Bijection.fun← iso q))) ≡ q |
141 | 112 finiso→ q = begin |
264 | 113 fun→ iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (Bijection.fun← iso q))) |
114 ≡⟨ cong (λ k → fun→ iso k ) (FiniteSet.finiso→ fin _ ) ⟩ | |
115 fun→ iso (Bijection.fun← iso q) | |
116 ≡⟨ fiso→ iso _ ⟩ | |
141 | 117 q |
264 | 118 ∎ where open ≡-Reasoning |
119 finiso← : (f : Fin (FiniteSet.finite fin ))→ FiniteSet.F←Q fin (Bijection.fun← iso (Bijection.fun→ iso (FiniteSet.Q←F fin f))) ≡ f | |
141 | 120 finiso← f = begin |
264 | 121 FiniteSet.F←Q fin (Bijection.fun← iso (Bijection.fun→ iso (FiniteSet.Q←F fin f))) |
122 ≡⟨ cong (λ k → FiniteSet.F←Q fin k ) (Bijection.fiso← iso _) ⟩ | |
141 | 123 FiniteSet.F←Q fin (FiniteSet.Q←F fin f) |
124 ≡⟨ FiniteSet.finiso← fin _ ⟩ | |
125 f | |
126 ∎ where | |
127 open ≡-Reasoning | |
128 | |
129 data One : Set where | |
130 one : One | |
131 | |
132 fin-∨1 : {B : Set} → (fb : FiniteSet B ) → FiniteSet (One ∨ B) | |
133 fin-∨1 {B} fb = record { | |
330 | 134 Q←F = Q←F |
135 ; F←Q = F←Q | |
136 ; finiso→ = finiso→ | |
137 ; finiso← = finiso← | |
141 | 138 } where |
139 b = FiniteSet.finite fb | |
140 Q←F : Fin (suc b) → One ∨ B | |
141 Q←F zero = case1 one | |
142 Q←F (suc f) = case2 (FiniteSet.Q←F fb f) | |
143 F←Q : One ∨ B → Fin (suc b) | |
144 F←Q (case1 one) = zero | |
145 F←Q (case2 f ) = suc (FiniteSet.F←Q fb f) | |
146 finiso→ : (q : One ∨ B) → Q←F (F←Q q) ≡ q | |
147 finiso→ (case1 one) = refl | |
148 finiso→ (case2 b) = cong (λ k → case2 k ) (FiniteSet.finiso→ fb b) | |
149 finiso← : (q : Fin (suc b)) → F←Q (Q←F q) ≡ q | |
150 finiso← zero = refl | |
151 finiso← (suc f) = cong ( λ k → suc k ) (FiniteSet.finiso← fb f) | |
152 | |
153 | |
154 fin-∨2 : {B : Set} → ( a : ℕ ) → FiniteSet B → FiniteSet (Fin a ∨ B) | |
155 fin-∨2 {B} zero fb = iso-fin fb iso where | |
264 | 156 iso : Bijection B (Fin zero ∨ B) |
157 iso = record { | |
158 fun← = fun←1 | |
159 ; fun→ = λ b → case2 b | |
160 ; fiso→ = fiso→1 | |
161 ; fiso← = λ _ → refl | |
141 | 162 } where |
264 | 163 fun←1 : Fin zero ∨ B → B |
164 fun←1 (case2 x) = x | |
165 fiso→1 : (f : Fin zero ∨ B ) → case2 (fun←1 f) ≡ f | |
166 fiso→1 (case2 x) = refl | |
141 | 167 fin-∨2 {B} (suc a) fb = iso-fin (fin-∨1 (fin-∨2 a fb) ) iso |
168 where | |
264 | 169 iso : Bijection (One ∨ (Fin a ∨ B) ) (Fin (suc a) ∨ B) |
170 fun← iso (case1 zero) = case1 one | |
171 fun← iso (case1 (suc f)) = case2 (case1 f) | |
172 fun← iso (case2 b) = case2 (case2 b) | |
173 fun→ iso (case1 one) = case1 zero | |
174 fun→ iso (case2 (case1 f)) = case1 (suc f) | |
175 fun→ iso (case2 (case2 b)) = case2 b | |
176 fiso← iso (case1 one) = refl | |
177 fiso← iso (case2 (case1 x)) = refl | |
178 fiso← iso (case2 (case2 x)) = refl | |
179 fiso→ iso (case1 zero) = refl | |
180 fiso→ iso (case1 (suc x)) = refl | |
181 fiso→ iso (case2 x) = refl | |
141 | 182 |
183 | |
264 | 184 FiniteSet→Fin : {A : Set} → (fin : FiniteSet A ) → Bijection (Fin (FiniteSet.finite fin)) A |
185 fun← (FiniteSet→Fin fin) f = FiniteSet.F←Q fin f | |
186 fun→ (FiniteSet→Fin fin) f = FiniteSet.Q←F fin f | |
187 fiso← (FiniteSet→Fin fin) = FiniteSet.finiso← fin | |
188 fiso→ (FiniteSet→Fin fin) = FiniteSet.finiso→ fin | |
141 | 189 |
190 | |
191 fin-∨ : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A ∨ B) | |
192 fin-∨ {A} {B} fa fb = iso-fin (fin-∨2 a fb ) iso2 where | |
193 a = FiniteSet.finite fa | |
194 ia = FiniteSet→Fin fa | |
264 | 195 iso2 : Bijection (Fin a ∨ B ) (A ∨ B) |
196 fun← iso2 (case1 x) = case1 (fun← ia x ) | |
197 fun← iso2 (case2 x) = case2 x | |
198 fun→ iso2 (case1 x) = case1 (fun→ ia x ) | |
199 fun→ iso2 (case2 x) = case2 x | |
200 fiso← iso2 (case1 x) = cong ( λ k → case1 k ) (Bijection.fiso← ia x) | |
201 fiso← iso2 (case2 x) = refl | |
202 fiso→ iso2 (case1 x) = cong ( λ k → case1 k ) (Bijection.fiso→ ia x) | |
203 fiso→ iso2 (case2 x) = refl | |
141 | 204 |
278
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
205 open import Data.Product hiding ( map ) |
141 | 206 |
207 fin-× : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A × B) | |
208 fin-× {A} {B} fa fb with FiniteSet→Fin fa | |
209 ... | a=f = iso-fin (fin-×-f a ) iso-1 where | |
210 a = FiniteSet.finite fa | |
211 b = FiniteSet.finite fb | |
264 | 212 iso-1 : Bijection (Fin a × B) ( A × B ) |
213 fun← iso-1 x = ( FiniteSet.F←Q fa (proj₁ x) , proj₂ x) | |
214 fun→ iso-1 x = ( FiniteSet.Q←F fa (proj₁ x) , proj₂ x) | |
215 fiso← iso-1 x = lemma where | |
141 | 216 lemma : (FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj₁ x)) , proj₂ x) ≡ ( proj₁ x , proj₂ x ) |
217 lemma = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso← fa _ ) | |
264 | 218 fiso→ iso-1 x = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso→ fa _ ) |
141 | 219 |
264 | 220 iso-2 : {a : ℕ } → Bijection (B ∨ (Fin a × B)) (Fin (suc a) × B) |
221 fun← iso-2 (zero , b ) = case1 b | |
222 fun← iso-2 (suc fst , b ) = case2 ( fst , b ) | |
223 fun→ iso-2 (case1 b) = ( zero , b ) | |
224 fun→ iso-2 (case2 (a , b )) = ( suc a , b ) | |
225 fiso← iso-2 (case1 x) = refl | |
226 fiso← iso-2 (case2 x) = refl | |
227 fiso→ iso-2 (zero , b ) = refl | |
228 fiso→ iso-2 (suc a , b ) = refl | |
141 | 229 |
230 fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) × B) | |
231 fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () ; finite = 0 } | |
232 fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2 | |
233 | |
234 open _∧_ | |
235 | |
236 fin-∧ : {A B : Set} → FiniteSet A → FiniteSet B → FiniteSet (A ∧ B) | |
237 fin-∧ {A} {B} fa fb with FiniteSet→Fin fa -- same thing for our tool | |
238 ... | a=f = iso-fin (fin-×-f a ) iso-1 where | |
239 a = FiniteSet.finite fa | |
240 b = FiniteSet.finite fb | |
264 | 241 iso-1 : Bijection (Fin a ∧ B) ( A ∧ B ) |
242 fun← iso-1 x = record { proj1 = FiniteSet.F←Q fa (proj1 x) ; proj2 = proj2 x} | |
243 fun→ iso-1 x = record { proj1 = FiniteSet.Q←F fa (proj1 x) ; proj2 = proj2 x} | |
244 fiso← iso-1 x = lemma where | |
141 | 245 lemma : record { proj1 = FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj1 x)) ; proj2 = proj2 x} ≡ record {proj1 = proj1 x ; proj2 = proj2 x } |
246 lemma = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso← fa _ ) | |
264 | 247 fiso→ iso-1 x = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso→ fa _ ) |
141 | 248 |
264 | 249 iso-2 : {a : ℕ } → Bijection (B ∨ (Fin a ∧ B)) (Fin (suc a) ∧ B) |
250 fun← iso-2 (record { proj1 = zero ; proj2 = b }) = case1 b | |
251 fun← iso-2 (record { proj1 = suc fst ; proj2 = b }) = case2 ( record { proj1 = fst ; proj2 = b } ) | |
252 fun→ iso-2 (case1 b) = record {proj1 = zero ; proj2 = b } | |
253 fun→ iso-2 (case2 (record { proj1 = a ; proj2 = b })) = record { proj1 = suc a ; proj2 = b } | |
254 fiso← iso-2 (case1 x) = refl | |
255 fiso← iso-2 (case2 x) = refl | |
256 fiso→ iso-2 (record { proj1 = zero ; proj2 = b }) = refl | |
257 fiso→ iso-2 (record { proj1 = suc a ; proj2 = b }) = refl | |
141 | 258 |
259 fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) ∧ B) | |
260 fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () ; finite = 0 } | |
261 fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2 | |
262 | |
263 -- import Data.Nat.DivMod | |
264 | |
278
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
265 open import Data.Vec hiding ( map ; length ) |
141 | 266 import Data.Product |
267 | |
268 exp2 : (n : ℕ ) → exp 2 (suc n) ≡ exp 2 n Data.Nat.+ exp 2 n | |
269 exp2 n = begin | |
270 exp 2 (suc n) | |
271 ≡⟨⟩ | |
272 2 * ( exp 2 n ) | |
273 ≡⟨ *-comm 2 (exp 2 n) ⟩ | |
274 ( exp 2 n ) * 2 | |
275 ≡⟨ *-suc ( exp 2 n ) 1 ⟩ | |
276 (exp 2 n ) Data.Nat.+ ( exp 2 n ) * 1 | |
277 ≡⟨ cong ( λ k → (exp 2 n ) Data.Nat.+ k ) (proj₂ *-identity (exp 2 n) ) ⟩ | |
278 exp 2 n Data.Nat.+ exp 2 n | |
279 ∎ where | |
280 open ≡-Reasoning | |
281 open Data.Product | |
282 | |
283 cast-iso : {n m : ℕ } → (eq : n ≡ m ) → (f : Fin m ) → cast eq ( cast (sym eq ) f) ≡ f | |
284 cast-iso refl zero = refl | |
285 cast-iso refl (suc f) = cong ( λ k → suc k ) ( cast-iso refl f ) | |
286 | |
287 | |
288 fin2List : {n : ℕ } → FiniteSet (Vec Bool n) | |
289 fin2List {zero} = record { | |
290 Q←F = λ _ → Vec.[] | |
291 ; F←Q = λ _ → # 0 | |
292 ; finiso→ = finiso→ | |
293 ; finiso← = finiso← | |
294 } where | |
295 Q = Vec Bool zero | |
296 finiso→ : (q : Q) → [] ≡ q | |
297 finiso→ [] = refl | |
298 finiso← : (f : Fin (exp 2 zero)) → # 0 ≡ f | |
299 finiso← zero = refl | |
300 fin2List {suc n} = subst (λ k → FiniteSet (Vec Bool (suc n)) ) (sym (exp2 n)) ( iso-fin (fin-∨ (fin2List ) (fin2List )) iso ) | |
301 where | |
302 QtoR : Vec Bool (suc n) → Vec Bool n ∨ Vec Bool n | |
303 QtoR ( true ∷ x ) = case1 x | |
304 QtoR ( false ∷ x ) = case2 x | |
305 RtoQ : Vec Bool n ∨ Vec Bool n → Vec Bool (suc n) | |
306 RtoQ ( case1 x ) = true ∷ x | |
307 RtoQ ( case2 x ) = false ∷ x | |
308 isoRQ : (x : Vec Bool (suc n) ) → RtoQ ( QtoR x ) ≡ x | |
309 isoRQ (true ∷ _ ) = refl | |
310 isoRQ (false ∷ _ ) = refl | |
311 isoQR : (x : Vec Bool n ∨ Vec Bool n ) → QtoR ( RtoQ x ) ≡ x | |
312 isoQR (case1 x) = refl | |
313 isoQR (case2 x) = refl | |
264 | 314 iso : Bijection (Vec Bool n ∨ Vec Bool n) (Vec Bool (suc n)) |
315 iso = record { fun← = QtoR ; fun→ = RtoQ ; fiso← = isoQR ; fiso→ = isoRQ } | |
141 | 316 |
317 F2L : {Q : Set } {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → ( (q : Q) → toℕ (FiniteSet.F←Q fin q ) < n → Bool ) → Vec Bool n | |
318 F2L {Q} {zero} fin _ Q→B = [] | |
319 F2L {Q} {suc n} fin (s≤s n<m) Q→B = Q→B (FiniteSet.Q←F fin (fromℕ< n<m)) lemma6 ∷ F2L {Q} fin (NatP.<-trans n<m a<sa ) qb1 where | |
320 lemma6 : toℕ (FiniteSet.F←Q fin (FiniteSet.Q←F fin (fromℕ< n<m))) < suc n | |
321 lemma6 = subst (λ k → toℕ k < suc n ) (sym (FiniteSet.finiso← fin _ )) (subst (λ k → k < suc n) (sym (toℕ-fromℕ< n<m )) a<sa ) | |
322 qb1 : (q : Q) → toℕ (FiniteSet.F←Q fin q) < n → Bool | |
323 qb1 q q<n = Q→B q (NatP.<-trans q<n a<sa) | |
324 | |
325 List2Func : { Q : Set } → {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → Vec Bool n → Q → Bool | |
326 List2Func {Q} {zero} fin (s≤s z≤n) [] q = false | |
327 List2Func {Q} {suc n} fin (s≤s n<m) (h ∷ t) q with FiniteSet.F←Q fin q ≟ fromℕ< n<m | |
328 ... | yes _ = h | |
329 ... | no _ = List2Func {Q} fin (NatP.<-trans n<m a<sa ) t q | |
330 | |
331 open import Level renaming ( suc to Suc ; zero to Zero) | |
332 open import Axiom.Extensionality.Propositional | |
268 | 333 -- postulate f-extensionality : { n : Level} → Axiom.Extensionality.Propositional.Extensionality n n |
141 | 334 |
335 F2L-iso : { Q : Set } → (fin : FiniteSet Q ) → (x : Vec Bool (FiniteSet.finite fin) ) → F2L fin a<sa (λ q _ → List2Func fin a<sa x q ) ≡ x | |
336 F2L-iso {Q} fin x = f2l m a<sa x where | |
337 m = FiniteSet.finite fin | |
338 f2l : (n : ℕ ) → (n<m : n < suc m )→ (x : Vec Bool n ) → F2L fin n<m (λ q q<n → List2Func fin n<m x q ) ≡ x | |
339 f2l zero (s≤s z≤n) [] = refl | |
163 | 340 f2l (suc n) (s≤s n<m) (h ∷ t ) = lemma1 lemma2 lemma3f where |
141 | 341 lemma1 : {n : ℕ } → {h h1 : Bool } → {t t1 : Vec Bool n } → h ≡ h1 → t ≡ t1 → h ∷ t ≡ h1 ∷ t1 |
342 lemma1 refl refl = refl | |
343 lemma2 : List2Func fin (s≤s n<m) (h ∷ t) (FiniteSet.Q←F fin (fromℕ< n<m)) ≡ h | |
344 lemma2 with FiniteSet.F←Q fin (FiniteSet.Q←F fin (fromℕ< n<m)) ≟ fromℕ< n<m | |
345 lemma2 | yes p = refl | |
346 lemma2 | no ¬p = ⊥-elim ( ¬p (FiniteSet.finiso← fin _) ) | |
347 lemma4 : (q : Q ) → toℕ (FiniteSet.F←Q fin q ) < n → List2Func fin (s≤s n<m) (h ∷ t) q ≡ List2Func fin (NatP.<-trans n<m a<sa) t q | |
348 lemma4 q _ with FiniteSet.F←Q fin q ≟ fromℕ< n<m | |
349 lemma4 q lt | yes p = ⊥-elim ( nat-≡< (toℕ-fromℕ< n<m) (lemma5 n lt (cong (λ k → toℕ k) p))) where | |
350 lemma5 : {j k : ℕ } → ( n : ℕ) → suc j ≤ n → j ≡ k → k < n | |
351 lemma5 {zero} (suc n) (s≤s z≤n) refl = s≤s z≤n | |
352 lemma5 {suc j} (suc n) (s≤s lt) refl = s≤s (lemma5 {j} n lt refl) | |
353 lemma4 q _ | no ¬p = refl | |
163 | 354 lemma3f : F2L fin (NatP.<-trans n<m a<sa) (λ q q<n → List2Func fin (s≤s n<m) (h ∷ t) q ) ≡ t |
355 lemma3f = begin | |
141 | 356 F2L fin (NatP.<-trans n<m a<sa) (λ q q<n → List2Func fin (s≤s n<m) (h ∷ t) q ) |
357 ≡⟨ cong (λ k → F2L fin (NatP.<-trans n<m a<sa) ( λ q q<n → k q q<n )) | |
358 (f-extensionality ( λ q → | |
359 (f-extensionality ( λ q<n → lemma4 q q<n )))) ⟩ | |
360 F2L fin (NatP.<-trans n<m a<sa) (λ q q<n → List2Func fin (NatP.<-trans n<m a<sa) t q ) | |
361 ≡⟨ f2l n (NatP.<-trans n<m a<sa ) t ⟩ | |
362 t | |
363 ∎ where | |
364 open ≡-Reasoning | |
365 | |
366 | |
367 L2F : {Q : Set } {n : ℕ } → (fin : FiniteSet Q ) → n < suc (FiniteSet.finite fin) → Vec Bool n → (q : Q ) → toℕ (FiniteSet.F←Q fin q ) < n → Bool | |
368 L2F fin n<m x q q<n = List2Func fin n<m x q | |
369 | |
370 L2F-iso : { Q : Set } → (fin : FiniteSet Q ) → (f : Q → Bool ) → (q : Q ) → (L2F fin a<sa (F2L fin a<sa (λ q _ → f q) )) q (toℕ<n _) ≡ f q | |
371 L2F-iso {Q} fin f q = l2f m a<sa (toℕ<n _) where | |
372 m = FiniteSet.finite fin | |
163 | 373 lemma11f : {n : ℕ } → (n<m : n < m ) → ¬ ( FiniteSet.F←Q fin q ≡ fromℕ< n<m ) → toℕ (FiniteSet.F←Q fin q) ≤ n → toℕ (FiniteSet.F←Q fin q) < n |
374 lemma11f n<m ¬q=n q≤n = lemma13 n<m (contra-position (lemma12 n<m _) ¬q=n ) q≤n where | |
141 | 375 lemma13 : {n nq : ℕ } → (n<m : n < m ) → ¬ ( nq ≡ n ) → nq ≤ n → nq < n |
376 lemma13 {0} {0} (s≤s z≤n) nt z≤n = ⊥-elim ( nt refl ) | |
377 lemma13 {suc _} {0} (s≤s (s≤s n<m)) nt z≤n = s≤s z≤n | |
378 lemma13 {suc n} {suc nq} n<m nt (s≤s nq≤n) = s≤s (lemma13 {n} {nq} (NatP.<-trans a<sa n<m ) (λ eq → nt ( cong ( λ k → suc k ) eq )) nq≤n) | |
163 | 379 lemma3f : {a b : ℕ } → (lt : a < b ) → fromℕ< (s≤s lt) ≡ suc (fromℕ< lt) |
380 lemma3f (s≤s lt) = refl | |
381 lemma12f : {n m : ℕ } → (n<m : n < m ) → (f : Fin m ) → toℕ f ≡ n → f ≡ fromℕ< n<m | |
382 lemma12f {zero} {suc m} (s≤s z≤n) zero refl = refl | |
383 lemma12f {suc n} {suc m} (s≤s n<m) (suc f) refl = subst ( λ k → suc f ≡ k ) (sym (lemma3f n<m) ) ( cong ( λ k → suc k ) ( lemma12f {n} {m} n<m f refl ) ) | |
141 | 384 l2f : (n : ℕ ) → (n<m : n < suc m ) → (q<n : toℕ (FiniteSet.F←Q fin q ) < n ) → (L2F fin n<m (F2L fin n<m (λ q _ → f q))) q q<n ≡ f q |
385 l2f zero (s≤s z≤n) () | |
386 l2f (suc n) (s≤s n<m) (s≤s n<q) with FiniteSet.F←Q fin q ≟ fromℕ< n<m | |
387 l2f (suc n) (s≤s n<m) (s≤s n<q) | yes p = begin | |
388 f (FiniteSet.Q←F fin (fromℕ< n<m)) | |
389 ≡⟨ cong ( λ k → f (FiniteSet.Q←F fin k )) (sym p) ⟩ | |
390 f (FiniteSet.Q←F fin ( FiniteSet.F←Q fin q )) | |
391 ≡⟨ cong ( λ k → f k ) (FiniteSet.finiso→ fin _ ) ⟩ | |
392 f q | |
393 ∎ where | |
394 open ≡-Reasoning | |
163 | 395 l2f (suc n) (s≤s n<m) (s≤s n<q) | no ¬p = l2f n (NatP.<-trans n<m a<sa) (lemma11f n<m ¬p n<q) |
141 | 396 |
397 fin→ : {A : Set} → FiniteSet A → FiniteSet (A → Bool ) | |
398 fin→ {A} fin = iso-fin fin2List iso where | |
399 a = FiniteSet.finite fin | |
264 | 400 iso : Bijection (Vec Bool a ) (A → Bool) |
401 fun← iso x = F2L fin a<sa ( λ q _ → x q ) | |
402 fun→ iso x = List2Func fin a<sa x | |
403 fiso← iso x = F2L-iso fin x | |
404 fiso→ iso x = lemma where | |
141 | 405 lemma : List2Func fin a<sa (F2L fin a<sa (λ q _ → x q)) ≡ x |
406 lemma = f-extensionality ( λ q → L2F-iso fin x q ) | |
407 | |
408 | |
409 Fin2Finite : ( n : ℕ ) → FiniteSet (Fin n) | |
410 Fin2Finite n = record { F←Q = λ x → x ; Q←F = λ x → x ; finiso← = λ q → refl ; finiso→ = λ q → refl } | |
411 | |
412 data fin-less { n : ℕ } { A : Set } (fa : FiniteSet A ) (n<m : n < FiniteSet.finite fa ) : Set where | |
413 elm1 : (elm : A ) → toℕ (FiniteSet.F←Q fa elm ) < n → fin-less fa n<m | |
414 | |
415 get-elm : { n : ℕ } { A : Set } {fa : FiniteSet A } {n<m : n < FiniteSet.finite fa } → fin-less fa n<m → A | |
416 get-elm (elm1 a _ ) = a | |
417 | |
418 get-< : { n : ℕ } { A : Set } {fa : FiniteSet A } {n<m : n < FiniteSet.finite fa }→ (f : fin-less fa n<m ) → toℕ (FiniteSet.F←Q fa (get-elm f )) < n | |
419 get-< (elm1 _ b ) = b | |
420 | |
421 fin-less-cong : { n : ℕ } { A : Set } (fa : FiniteSet A ) (n<m : n < FiniteSet.finite fa ) | |
422 → (x y : fin-less fa n<m ) → get-elm {n} {A} {fa} x ≡ get-elm {n} {A} {fa} y → get-< x ≅ get-< y → x ≡ y | |
423 fin-less-cong fa n<m (elm1 elm x) (elm1 elm x) refl HE.refl = refl | |
424 | |
425 fin-< : {A : Set} → { n : ℕ } → (fa : FiniteSet A ) → (n<m : n < FiniteSet.finite fa ) → FiniteSet (fin-less fa n<m ) | |
426 fin-< {A} {n} fa n<m = iso-fin (Fin2Finite n) iso where | |
427 m = FiniteSet.finite fa | |
264 | 428 iso : Bijection (Fin n) (fin-less fa n<m ) |
163 | 429 lemma8f : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n |
430 lemma8f {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl | |
431 lemma8f {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( lemma8f {i} {i} refl ) | |
432 lemma10f : {n i j : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → fromℕ< i<n ≡ fromℕ< j<n | |
433 lemma10f refl = HE.≅-to-≡ (HE.cong (λ k → fromℕ< k ) (lemma8f refl )) | |
434 lemma3f : {a b c : ℕ } → { a<b : a < b } { b<c : b < c } { a<c : a < c } → NatP.<-trans a<b b<c ≡ a<c | |
435 lemma3f {a} {b} {c} {a<b} {b<c} {a<c} = HE.≅-to-≡ (lemma8f refl) | |
436 lemma11f : {n : ℕ } {x : Fin n } → (n<m : n < m ) → toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) ≡ toℕ x | |
437 lemma11f {n} {x} n<m = begin | |
141 | 438 toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) |
439 ≡⟨ toℕ-fromℕ< _ ⟩ | |
440 toℕ x | |
441 ∎ where | |
442 open ≡-Reasoning | |
264 | 443 fun← iso (elm1 elm x) = fromℕ< x |
444 fun→ iso x = elm1 (FiniteSet.Q←F fa (fromℕ< (NatP.<-trans x<n n<m ))) to<n where | |
141 | 445 x<n : toℕ x < n |
446 x<n = toℕ<n x | |
447 to<n : toℕ (FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ< (NatP.<-trans x<n n<m)))) < n | |
448 to<n = subst (λ k → toℕ k < n ) (sym (FiniteSet.finiso← fa _ )) (subst (λ k → k < n ) (sym ( toℕ-fromℕ< (NatP.<-trans x<n n<m) )) x<n ) | |
264 | 449 fiso← iso x = lemma2 where |
141 | 450 lemma2 : fromℕ< (subst (λ k → toℕ k < n) (sym |
451 (FiniteSet.finiso← fa (fromℕ< (NatP.<-trans (toℕ<n x) n<m)))) (subst (λ k → k < n) | |
452 (sym (toℕ-fromℕ< (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x))) ≡ x | |
453 lemma2 = begin | |
454 fromℕ< (subst (λ k → toℕ k < n) (sym | |
455 (FiniteSet.finiso← fa (fromℕ< (NatP.<-trans (toℕ<n x) n<m)))) (subst (λ k → k < n) | |
456 (sym (toℕ-fromℕ< (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x))) | |
457 ≡⟨⟩ | |
458 fromℕ< ( subst (λ k → toℕ ( k ) < n ) (sym (FiniteSet.finiso← fa _ )) lemma6 ) | |
459 ≡⟨ lemma10 (cong (λ k → toℕ k) (FiniteSet.finiso← fa _ ) ) ⟩ | |
460 fromℕ< lemma6 | |
461 ≡⟨ lemma10 (lemma11 n<m ) ⟩ | |
462 fromℕ< ( toℕ<n x ) | |
463 ≡⟨ fromℕ<-toℕ _ _ ⟩ | |
464 x | |
465 ∎ where | |
466 open ≡-Reasoning | |
467 lemma6 : toℕ (fromℕ< (NatP.<-trans (toℕ<n x) n<m)) < n | |
468 lemma6 = subst ( λ k → k < n ) (sym (toℕ-fromℕ< (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x ) | |
264 | 469 fiso→ iso (elm1 elm x) = fin-less-cong fa n<m _ _ lemma (lemma8 (cong (λ k → toℕ (FiniteSet.F←Q fa k) ) lemma ) ) where |
141 | 470 lemma13 : toℕ (fromℕ< x) ≡ toℕ (FiniteSet.F←Q fa elm) |
471 lemma13 = begin | |
472 toℕ (fromℕ< x) | |
473 ≡⟨ toℕ-fromℕ< _ ⟩ | |
474 toℕ (FiniteSet.F←Q fa elm) | |
475 ∎ where open ≡-Reasoning | |
264 | 476 lemma : FiniteSet.Q←F fa (fromℕ< (NatP.<-trans (toℕ<n (Bijection.fun← iso (elm1 elm x))) n<m)) ≡ elm |
141 | 477 lemma = begin |
264 | 478 FiniteSet.Q←F fa (fromℕ< (NatP.<-trans (toℕ<n (Bijection.fun← iso (elm1 elm x))) n<m)) |
141 | 479 ≡⟨⟩ |
480 FiniteSet.Q←F fa (fromℕ< ( NatP.<-trans (toℕ<n ( fromℕ< x ) ) n<m)) | |
264 | 481 ≡⟨ cong (λ k → FiniteSet.Q←F fa k) (lemma10 lemma13 ) ⟩ |
141 | 482 FiniteSet.Q←F fa (fromℕ< ( NatP.<-trans x n<m)) |
264 | 483 ≡⟨ cong (λ k → FiniteSet.Q←F fa (fromℕ< k )) (HE.≅-to-≡ (lemma8 refl)) ⟩ |
141 | 484 FiniteSet.Q←F fa (fromℕ< ( toℕ<n (FiniteSet.F←Q fa elm))) |
485 ≡⟨ cong (λ k → FiniteSet.Q←F fa k ) ( fromℕ<-toℕ _ _ ) ⟩ | |
486 FiniteSet.Q←F fa (FiniteSet.F←Q fa elm ) | |
487 ≡⟨ FiniteSet.finiso→ fa _ ⟩ | |
488 elm | |
489 ∎ where open ≡-Reasoning | |
490 | |
278
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
491 open import Data.List |
141 | 492 |
278
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
493 open FiniteSet |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
494 |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
495 memberQ : { Q : Set } (finq : FiniteSet Q) (q : Q) (qs : List Q ) → Bool |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
496 memberQ {Q} finq q [] = false |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
497 memberQ {Q} finq q (q0 ∷ qs) with equal? finq q q0 |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
498 ... | true = true |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
499 ... | false = memberQ finq q qs |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
500 |
316 | 501 -- |
502 -- there is a duplicate element in finite list | |
503 -- | |
504 | |
330 | 505 -- |
506 -- How about this? | |
507 -- get list of Q | |
508 -- remove one element for each Q from list | |
509 -- there must be remaining list > 1 | |
510 -- theses are duplicates | |
511 -- actualy it is duplicate | |
512 | |
278
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
513 phase2 : { Q : Set } (finq : FiniteSet Q) (q : Q) (qs : List Q ) → Bool |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
514 phase2 finq q [] = false |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
515 phase2 finq q (x ∷ qs) with equal? finq q x |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
516 ... | true = true |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
517 ... | false = phase2 finq q qs |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
518 phase1 : { Q : Set } (finq : FiniteSet Q) (q : Q) (qs : List Q ) → Bool |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
519 phase1 finq q [] = false |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
520 phase1 finq q (x ∷ qs) with equal? finq q x |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
521 ... | true = phase2 finq q qs |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
522 ... | false = phase1 finq q qs |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
523 |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
524 dup-in-list : { Q : Set } (finq : FiniteSet Q) (q : Q) (qs : List Q ) → Bool |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
525 dup-in-list {Q} finq q qs = phase1 finq q qs |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
526 |
316 | 527 -- |
528 -- if length of the list is longer than kinds of a finite set, there is a duplicate | |
529 -- prove this based on the theorem on Data.Fin | |
530 -- | |
531 | |
283 | 532 dup-in-list+fin : { Q : Set } (finq : FiniteSet Q) |
278
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
533 → (q : Q) (qs : List Q ) |
283 | 534 → fin-dup-in-list (F←Q finq q) (map (F←Q finq) qs) ≡ true |
278
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
535 → dup-in-list finq q qs ≡ true |
283 | 536 dup-in-list+fin {Q} finq q qs p = i-phase1 qs p where |
537 i-phase2 : (qs : List Q) → fin-phase2 (F←Q finq q) (map (F←Q finq) qs) ≡ true | |
278
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
538 → phase2 finq q qs ≡ true |
294 | 539 i-phase2 (x ∷ qs) p with equal? finq q x | inspect (equal? finq q ) x | <-fcmp (F←Q finq q) (F←Q finq x) |
540 ... | true | _ | t = refl | |
541 ... | false | _ | tri< a ¬b ¬c = i-phase2 qs p | |
542 ... | false | record { eq = eq } | tri≈ ¬a b ¬c = ⊥-elim (¬-bool eq | |
543 (subst₂ (λ j k → equal? finq j k ≡ true) (finiso→ finq q) (subst (λ k → Q←F finq k ≡ x) (sym b) (finiso→ finq x)) ( equal?-refl finq ))) | |
544 ... | false | _ | tri> ¬a ¬b c = i-phase2 qs p | |
283 | 545 i-phase1 : (qs : List Q) → fin-phase1 (F←Q finq q) (map (F←Q finq) qs) ≡ true |
278
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
546 → phase1 finq q qs ≡ true |
294 | 547 i-phase1 (x ∷ qs) p with equal? finq q x | inspect (equal? finq q ) x | <-fcmp (F←Q finq q) (F←Q finq x) |
548 ... | true | record { eq = eq } | tri< a ¬b ¬c = ⊥-elim ( nat-≡< (cong (λ x → toℕ (F←Q finq x)) ( equal→refl finq eq )) a ) | |
549 ... | true | _ | tri≈ ¬a b ¬c = i-phase2 qs p | |
550 ... | true | record { eq = eq} | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (cong (λ x → toℕ (F←Q finq x)) (sym ( equal→refl finq eq ))) c ) | |
551 ... | false | _ | tri< a ¬b ¬c = i-phase1 qs p | |
552 ... | false | record {eq = eq} | tri≈ ¬a b ¬c = ⊥-elim (¬-bool eq | |
553 (subst₂ (λ j k → equal? finq j k ≡ true) (finiso→ finq q) (subst (λ k → Q←F finq k ≡ x) (sym b) (finiso→ finq x)) ( equal?-refl finq ))) | |
554 ... | false | _ | tri> ¬a ¬b c = i-phase1 qs p | |
278
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
555 |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
556 record Dup-in-list {Q : Set } (finq : FiniteSet Q) (qs : List Q) : Set where |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
557 field |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
558 dup : Q |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
559 is-dup : dup-in-list finq dup qs ≡ true |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
560 |
e89957b99662
dup in finiteSet in long list
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
268
diff
changeset
|
561 dup-in-list>n : {Q : Set } → (finq : FiniteSet Q) → (qs : List Q) → (len> : length qs > finite finq ) → Dup-in-list finq qs |
283 | 562 dup-in-list>n {Q} finq qs lt = record { dup = Q←F finq (FDup-in-list.dup dl) |
563 ; is-dup = dup-in-list+fin finq (Q←F finq (FDup-in-list.dup dl)) qs dl01 } where | |
294 | 564 maplen : (qs : List Q) → length (map (F←Q finq) qs) ≡ length qs |
565 maplen [] = refl | |
566 maplen (x ∷ qs) = cong suc (maplen qs) | |
283 | 567 dl : FDup-in-list (finite finq ) (map (F←Q finq) qs) |
294 | 568 dl = fin-dup-in-list>n (map (F←Q finq) qs) (subst (λ k → k > finite finq ) (sym (maplen qs)) lt) |
283 | 569 dl01 : fin-dup-in-list (F←Q finq (Q←F finq (FDup-in-list.dup dl))) (map (F←Q finq) qs) ≡ true |
570 dl01 = subst (λ k → fin-dup-in-list k (map (F←Q finq) qs) ≡ true ) | |
294 | 571 (sym (finiso← finq _)) ( FDup-in-list.is-dup dl ) |