annotate automaton-in-agda/src/gcd.agda @ 227:a61f121c34a4

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 23 Jun 2021 18:10:18 +0900
parents 6077bdd19312
children a72bcc6eadad
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
148
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
1 {-# OPTIONS --allow-unsolved-metas #-}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 147
diff changeset
2 module gcd where
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
4 open import Data.Nat
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
5 open import Data.Nat.Properties
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import Data.Empty
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
7 open import Data.Unit using (⊤ ; tt)
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Relation.Nullary
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Relation.Binary.PropositionalEquality
141
b3f05cd08d24 clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 57
diff changeset
10 open import Relation.Binary.Definitions
149
d3a8572ced9c non terminating GCD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 148
diff changeset
11 open import nat
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 150
diff changeset
12 open import logic
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
14 record Factor (n m : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
15 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
16 factor : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
17 remain : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
18 is-factor : factor * n + remain ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
19
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
20 record Dividable (n m : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
21 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
22 factor : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
23 is-factor : factor * n + 0 ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
24
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
25 open Factor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
26
193
875eb1fa9694 dividable reorganzaiton
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
27 DtoF : {n m : ℕ} → Dividable n m → Factor n m
195
373b6e0ec595 ... remove f>1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
28 DtoF {n} {m} record { factor = f ; is-factor = fa } = record { factor = f ; remain = 0 ; is-factor = fa }
193
875eb1fa9694 dividable reorganzaiton
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
29
195
373b6e0ec595 ... remove f>1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
30 FtoD : {n m : ℕ} → (fc : Factor n m) → remain fc ≡ 0 → Dividable n m
373b6e0ec595 ... remove f>1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 194
diff changeset
31 FtoD {n} {m} record { factor = f ; remain = r ; is-factor = fa } refl = record { factor = f ; is-factor = fa }
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
32
199
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
33 --divdable^2 : ( n k : ℕ ) → Dividable k ( n * n ) → Dividable k n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
34 --divdable^2 n k dn2 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 198
diff changeset
35
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
36 decf : { n k : ℕ } → ( x : Factor k (suc n) ) → Factor k n
191
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
37 decf {n} {k} record { factor = f ; remain = r ; is-factor = fa } =
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
38 decf1 {n} {k} f r fa where
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
39 decf1 : { n k : ℕ } → (f r : ℕ) → (f * k + r ≡ suc n) → Factor k n
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
40 decf1 {n} {k} f (suc r) fa = -- this case must be the first
187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
41 record { factor = f ; remain = r ; is-factor = ( begin -- fa : f * k + suc r ≡ suc n
189
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
42 f * k + r ≡⟨ cong pred ( begin
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
43 suc ( f * k + r ) ≡⟨ +-comm _ r ⟩
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
44 r + suc (f * k) ≡⟨ sym (+-assoc r 1 _) ⟩
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
45 (r + 1) + f * k ≡⟨ cong (λ t → t + f * k ) (+-comm r 1) ⟩
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
46 (suc r ) + f * k ≡⟨ +-comm (suc r) _ ⟩
6945d2aeb86a expanding record does not work
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 188
diff changeset
47 f * k + suc r ≡⟨ fa ⟩
187
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 186
diff changeset
48 suc n ∎ ) ⟩
191
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
49 n ∎ ) } where open ≡-Reasoning
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
50 decf1 {n} {zero} (suc f) zero fa = ⊥-elim ( nat-≡< fa (
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
51 begin suc (suc f * zero + zero) ≡⟨ cong suc (+-comm _ zero) ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
52 suc (f * 0) ≡⟨ cong suc (*-comm f zero) ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
53 suc zero ≤⟨ s≤s z≤n ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
54 suc n ∎ )) where open ≤-Reasoning
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
55 decf1 {n} {suc k} (suc f) zero fa =
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
56 record { factor = f ; remain = k ; is-factor = ( begin -- fa : suc (k + f * suc k + zero) ≡ suc n
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
57 f * suc k + k ≡⟨ +-comm _ k ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
58 k + f * suc k ≡⟨ +-comm zero _ ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
59 (k + f * suc k) + zero ≡⟨ cong pred fa ⟩
a3a72db6aed3 fix decf
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 190
diff changeset
60 n ∎ ) } where open ≡-Reasoning
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
61
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
62 div0 : {k : ℕ} → Dividable k 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
63 div0 {k} = record { factor = 0; is-factor = refl }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
64
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
65 div= : {k : ℕ} → Dividable k k
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
66 div= {k} = record { factor = 1; is-factor = ( begin
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
67 k + 0 * k + 0 ≡⟨ trans ( +-comm _ 0) ( +-comm _ 0) ⟩
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
68 k ∎ ) } where open ≡-Reasoning
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
69
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
70 gcd1 : ( i i0 j j0 : ℕ ) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
71 gcd1 zero i0 zero j0 with <-cmp i0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
72 ... | tri< a ¬b ¬c = i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
73 ... | tri≈ ¬a refl ¬c = i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
74 ... | tri> ¬a ¬b c = j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
75 gcd1 zero i0 (suc zero) j0 = 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
76 gcd1 zero zero (suc (suc j)) j0 = j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
77 gcd1 zero (suc i0) (suc (suc j)) j0 = gcd1 i0 (suc i0) (suc j) (suc (suc j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
78 gcd1 (suc zero) i0 zero j0 = 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
79 gcd1 (suc (suc i)) i0 zero zero = i0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
80 gcd1 (suc (suc i)) i0 zero (suc j0) = gcd1 (suc i) (suc (suc i)) j0 (suc j0)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
81 gcd1 (suc i) i0 (suc j) j0 = gcd1 i i0 j j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
82
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
83 gcd : ( i j : ℕ ) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
84 gcd i j = gcd1 i i j j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
85
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
86 gcd20 : (i : ℕ) → gcd i 0 ≡ i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
87 gcd20 zero = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
88 gcd20 (suc i) = gcd201 (suc i) where
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
89 gcd201 : (i : ℕ ) → gcd1 i i zero zero ≡ i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
90 gcd201 zero = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
91 gcd201 (suc zero) = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
92 gcd201 (suc (suc i)) = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
93
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
94 gcd22 : ( i i0 o o0 : ℕ ) → gcd1 (suc i) i0 (suc o) o0 ≡ gcd1 i i0 o o0
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
95 gcd22 zero i0 zero o0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
96 gcd22 zero i0 (suc o) o0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
97 gcd22 (suc i) i0 zero o0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
98 gcd22 (suc i) i0 (suc o) o0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
99
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
100 gcdmm : (n m : ℕ) → gcd1 n m n m ≡ m
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
101 gcdmm zero m with <-cmp m m
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
102 ... | tri< a ¬b ¬c = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
103 ... | tri≈ ¬a refl ¬c = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
104 ... | tri> ¬a ¬b c = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
105 gcdmm (suc n) m = subst (λ k → k ≡ m) (sym (gcd22 n m n m )) (gcdmm n m )
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
106
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
107 gcdsym2 : (i j : ℕ) → gcd1 zero i zero j ≡ gcd1 zero j zero i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
108 gcdsym2 i j with <-cmp i j | <-cmp j i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
109 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
110 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
111 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
112 ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ⊥-elim (nat-≡< (sym b) a)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
113 ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
114 ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim (nat-≡< b c)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
115 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
116 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (nat-≡< b c)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
117 ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
118 gcdsym1 : ( i i0 j j0 : ℕ ) → gcd1 i i0 j j0 ≡ gcd1 j j0 i i0
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
119 gcdsym1 zero zero zero zero = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
120 gcdsym1 zero zero zero (suc j0) = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
121 gcdsym1 zero (suc i0) zero zero = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
122 gcdsym1 zero (suc i0) zero (suc j0) = gcdsym2 (suc i0) (suc j0)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
123 gcdsym1 zero zero (suc zero) j0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
124 gcdsym1 zero zero (suc (suc j)) j0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
125 gcdsym1 zero (suc i0) (suc zero) j0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
126 gcdsym1 zero (suc i0) (suc (suc j)) j0 = gcdsym1 i0 (suc i0) (suc j) (suc (suc j))
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
127 gcdsym1 (suc zero) i0 zero j0 = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
128 gcdsym1 (suc (suc i)) i0 zero zero = refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
129 gcdsym1 (suc (suc i)) i0 zero (suc j0) = gcdsym1 (suc i) (suc (suc i))j0 (suc j0)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
130 gcdsym1 (suc i) i0 (suc j) j0 = subst₂ (λ j k → j ≡ k ) (sym (gcd22 i _ _ _)) (sym (gcd22 j _ _ _)) (gcdsym1 i i0 j j0 )
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
131
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
132 gcdsym : { n m : ℕ} → gcd n m ≡ gcd m n
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
133 gcdsym {n} {m} = gcdsym1 n n m m
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
134
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
135 gcd11 : ( i : ℕ ) → gcd i i ≡ i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
136 gcd11 i = gcdmm i i
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
137
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
138
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
139 gcd203 : (i : ℕ) → gcd1 (suc i) (suc i) i i ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
140 gcd203 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
141 gcd203 (suc i) = gcd205 (suc i) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
142 gcd205 : (j : ℕ) → gcd1 (suc j) (suc (suc i)) j (suc i) ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
143 gcd205 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
144 gcd205 (suc j) = subst (λ k → k ≡ 1) (gcd22 (suc j) (suc (suc i)) j (suc i)) (gcd205 j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
145
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
146 gcd204 : (i : ℕ) → gcd1 1 1 i i ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
147 gcd204 zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
148 gcd204 (suc zero) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
149 gcd204 (suc (suc zero)) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
150 gcd204 (suc (suc (suc i))) = gcd204 (suc (suc i))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
151
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
152 gcd+j : ( i j : ℕ ) → gcd (i + j) j ≡ gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
153 gcd+j i j = gcd200 i i j j refl refl where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
154 gcd202 : (i j1 : ℕ) → (i + suc j1) ≡ suc (i + j1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
155 gcd202 zero j1 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
156 gcd202 (suc i) j1 = cong suc (gcd202 i j1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
157 gcd201 : (i i0 j j0 j1 : ℕ) → gcd1 (i + j1) (i0 + suc j) j1 j0 ≡ gcd1 i (i0 + suc j) zero j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
158 gcd201 i i0 j j0 zero = subst (λ k → gcd1 k (i0 + suc j) zero j0 ≡ gcd1 i (i0 + suc j) zero j0 ) (+-comm zero i) refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
159 gcd201 i i0 j j0 (suc j1) = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
160 gcd1 (i + suc j1) (i0 + suc j) (suc j1) j0 ≡⟨ cong (λ k → gcd1 k (i0 + suc j) (suc j1) j0 ) (gcd202 i j1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
161 gcd1 (suc (i + j1)) (i0 + suc j) (suc j1) j0 ≡⟨ gcd22 (i + j1) (i0 + suc j) j1 j0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
162 gcd1 (i + j1) (i0 + suc j) j1 j0 ≡⟨ gcd201 i i0 j j0 j1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
163 gcd1 i (i0 + suc j) zero j0 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
164 gcd200 : (i i0 j j0 : ℕ) → i ≡ i0 → j ≡ j0 → gcd1 (i + j) (i0 + j) j j0 ≡ gcd1 i i j0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
165 gcd200 i .i zero .0 refl refl = subst (λ k → gcd1 k k zero zero ≡ gcd1 i i zero zero ) (+-comm zero i) refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
166 gcd200 (suc (suc i)) i0 (suc j) (suc j0) i=i0 j=j0 = gcd201 (suc (suc i)) i0 j (suc j0) (suc j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
167 gcd200 zero zero (suc zero) .1 i=i0 refl = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
168 gcd200 zero zero (suc (suc j)) .(suc (suc j)) i=i0 refl = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
169 gcd1 (zero + suc (suc j)) (zero + suc (suc j)) (suc (suc j)) (suc (suc j)) ≡⟨ gcdmm (suc (suc j)) (suc (suc j)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
170 suc (suc j) ≡⟨ sym (gcd20 (suc (suc j))) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
171 gcd1 zero zero (suc (suc j)) (suc (suc j)) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
172 gcd200 zero (suc i0) (suc j) .(suc j) () refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
173 gcd200 (suc zero) .1 (suc j) .(suc j) refl refl = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
174 gcd1 (1 + suc j) (1 + suc j) (suc j) (suc j) ≡⟨ gcd203 (suc j) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
175 1 ≡⟨ sym ( gcd204 (suc j)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
176 gcd1 1 1 (suc j) (suc j) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
177 gcd200 (suc (suc i)) i0 (suc j) zero i=i0 ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
178
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
179 div1 : { k : ℕ } → k > 1 → ¬ Dividable k 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
180 div1 {k} k>1 record { factor = (suc f) ; is-factor = fa } = ⊥-elim ( nat-≡< (sym fa) ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
181 2 ≤⟨ k>1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
182 k ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
183 k + 0 ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
184 1 * k ≤⟨ *-mono-≤ {1} {suc f} (s≤s z≤n ) ≤-refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
185 suc f * k ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
186 suc f * k + 0 ∎ )) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
187
213
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
188 div+div : { i j k : ℕ } → Dividable k i → Dividable k j → Dividable k (i + j) ∧ Dividable k (j + i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
189 div+div {i} {j} {k} di dj = ⟪ div+div1 , subst (λ g → Dividable k g) (+-comm i j) div+div1 ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
190 fki = Dividable.factor di
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
191 fkj = Dividable.factor dj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
192 div+div1 : Dividable k (i + j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
193 div+div1 = record { factor = fki + fkj ; is-factor = ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
194 (fki + fkj) * k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
195 (fki + fkj) * k ≡⟨ *-distribʳ-+ k fki _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
196 fki * k + fkj * k ≡⟨ cong₂ ( λ i j → i + j ) (+-comm 0 (fki * k)) (+-comm 0 (fkj * k)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
197 (fki * k + 0) + (fkj * k + 0) ≡⟨ cong₂ ( λ i j → i + j ) (Dividable.is-factor di) (Dividable.is-factor dj) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
198 i + j ∎ ) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
199 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
200
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
201 div-div : { i j k : ℕ } → k > 1 → Dividable k i → Dividable k j → Dividable k (i - j) ∧ Dividable k (j - i)
213
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
202 div-div {i} {j} {k} k>1 di dj = ⟪ div-div1 di dj , div-div1 dj di ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
203 div-div1 : {i j : ℕ } → Dividable k i → Dividable k j → Dividable k (i - j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
204 div-div1 {i} {j} di dj = record { factor = fki - fkj ; is-factor = ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
205 (fki - fkj) * k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
206 (fki - fkj) * k ≡⟨ distr-minus-* {fki} {fkj} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
207 (fki * k) - (fkj * k) ≡⟨ cong₂ ( λ i j → i - j ) (+-comm 0 (fki * k)) (+-comm 0 (fkj * k)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
208 (fki * k + 0) - (fkj * k + 0) ≡⟨ cong₂ ( λ i j → i - j ) (Dividable.is-factor di) (Dividable.is-factor dj) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
209 i - j ∎ ) } where
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
210 open ≡-Reasoning
213
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
211 fki = Dividable.factor di
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
212 fkj = Dividable.factor dj
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
213
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
214 open _∧_
192
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 191
diff changeset
215
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
216 div+1 : { i k : ℕ } → k > 1 → Dividable k i → ¬ Dividable k (suc i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
217 div+1 {i} {k} k>1 d d1 = div1 k>1 div+11 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
218 div+11 : Dividable k 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
219 div+11 = subst (λ g → Dividable k g) (minus+y-y {1} {i} ) ( proj2 (div-div k>1 d d1 ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
221 div<k : { m k : ℕ } → k > 1 → m > 0 → m < k → ¬ Dividable k m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
222 div<k {m} {k} k>1 m>0 m<k d = ⊥-elim ( nat-≤> (div<k1 (Dividable.factor d) (Dividable.is-factor d)) m<k ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
223 div<k1 : (f : ℕ ) → f * k + 0 ≡ m → k ≤ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
224 div<k1 zero eq = ⊥-elim (nat-≡< eq m>0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
225 div<k1 (suc f) eq = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
226 k ≤⟨ x≤x+y ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
227 k + (f * k + 0) ≡⟨ sym (+-assoc k _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
228 k + f * k + 0 ≡⟨ eq ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
229 m ∎ where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
230
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
231 div→k≤m : { m k : ℕ } → k > 1 → m > 0 → Dividable k m → m ≥ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
232 div→k≤m {m} {k} k>1 m>0 d with <-cmp m k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
233 ... | tri< a ¬b ¬c = ⊥-elim ( div<k k>1 m>0 a d )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
234 ... | tri≈ ¬a refl ¬c = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
235 ... | tri> ¬a ¬b c = <to≤ c
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
236
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
237 div1*k+0=k : {k : ℕ } → 1 * k + 0 ≡ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
238 div1*k+0=k {k} = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
239 1 * k + 0 ≡⟨ cong (λ g → g + 0) (+-comm _ 0) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
240 k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
241 k ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
242
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
243 decD : {k m : ℕ} → k > 1 → Dec (Dividable k m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
244 decD {k} {m} k>1 = n-induction {_} {_} {ℕ} {λ m → Dec (Dividable k m ) } F I m where
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
245 F : ℕ → ℕ
216
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 215
diff changeset
246 F m = m
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
247 F0 : ( m : ℕ ) → F (m - k) ≡ 0 → Dec (Dividable k m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
248 F0 0 eq = yes record { factor = 0 ; is-factor = refl }
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
249 F0 (suc m) eq with <-cmp k (suc m)
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
250 ... | tri< a ¬b ¬c = yes record { factor = 1 ; is-factor =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
251 subst (λ g → 1 * k + 0 ≡ g ) (sym (i-j=0→i=j (<to≤ a) eq )) div1*k+0=k } where -- (suc m - k) ≡ 0 → k ≡ suc m, k ≤ suc m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
252 ... | tri≈ ¬a refl ¬c = yes record { factor = 1 ; is-factor = div1*k+0=k }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
253 ... | tri> ¬a ¬b c = no ( λ d → ⊥-elim (div<k k>1 (s≤s z≤n ) c d) )
216
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 215
diff changeset
254 decl : {m : ℕ } → 0 < m → m - k < m
217
119ab3f823f1 NInduction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 216
diff changeset
255 decl {m} 0<m = y-x<y (<-trans a<sa k>1 ) 0<m
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
256 ind : (p : ℕ ) → Dec (Dividable k (p - k) ) → Dec (Dividable k p )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
257 ind p (yes y) with <-cmp p k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
258 ... | tri≈ ¬a refl ¬c = yes (subst (λ g → Dividable k g) (minus+n ≤-refl ) (proj1 ( div+div y div= )))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
259 ... | tri> ¬a ¬b k<p = yes (subst (λ g → Dividable k g) (minus+n (<-trans k<p a<sa)) (proj1 ( div+div y div= )))
221
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
260 ... | tri< a ¬b ¬c with <-cmp p 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
261 ... | tri≈ ¬a refl ¬c₁ = yes div0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
262 ... | tri> ¬a ¬b₁ c = no (λ d → not-div p (Dividable.factor d) a c (Dividable.is-factor d) ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
263 not-div : (p f : ℕ) → p < k → 0 < p → f * k + 0 ≡ p → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
264 not-div (suc p) (suc f) p<k 0<p eq = nat-≡< (sym eq) ( begin -- ≤-trans p<k {!!}) -- suc p ≤ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
265 suc (suc p) ≤⟨ p<k ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
266 k ≤⟨ x≤x+y ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
267 k + (f * k + 0) ≡⟨ sym (+-assoc k _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 220
diff changeset
268 suc f * k + 0 ∎ ) where open ≤-Reasoning
220
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 219
diff changeset
269 ind p (no n) = no (λ d → n (proj1 (div-div k>1 d div=)) )
216
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 215
diff changeset
270 I : Ninduction ℕ _ F
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
271 I = record {
216
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 215
diff changeset
272 pnext = λ p → p - k
217
119ab3f823f1 NInduction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 216
diff changeset
273 ; fzero = λ {m} eq → F0 m eq
219
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 218
diff changeset
274 ; decline = λ {m} lt → decl lt
217
119ab3f823f1 NInduction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 216
diff changeset
275 ; ind = λ {p} prev → ind p prev
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
276 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 214
diff changeset
277
193
875eb1fa9694 dividable reorganzaiton
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 192
diff changeset
278 gcd-gt : ( i i0 j j0 k : ℕ ) → k > 1 → (if : Factor k i) (i0f : Dividable k i0 ) (jf : Factor k j ) (j0f : Dividable k j0)
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
279 → Dividable k (i - j) ∧ Dividable k (j - i)
165
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 164
diff changeset
280 → Dividable k ( gcd1 i i0 j j0 )
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
281 gcd-gt zero i0 zero j0 k k>1 if i0f jf j0f i-j with <-cmp i0 j0
194
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
282 ... | tri< a ¬b ¬c = i0f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
283 ... | tri≈ ¬a refl ¬c = i0f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
284 ... | tri> ¬a ¬b c = j0f
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
285 gcd-gt zero i0 (suc zero) j0 k k>1 if i0f jf j0f i-j = ⊥-elim (div1 k>1 (proj2 i-j)) -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
286 gcd-gt zero zero (suc (suc j)) j0 k k>1 if i0f jf j0f i-j = j0f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
287 gcd-gt zero (suc i0) (suc (suc j)) j0 k k>1 if i0f jf j0f i-j =
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
288 gcd-gt i0 (suc i0) (suc j) (suc (suc j)) k k>1 (decf (DtoF i0f)) i0f (decf jf) (proj2 i-j) (div-div k>1 i0f (proj2 i-j))
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
289 gcd-gt (suc zero) i0 zero j0 k k>1 if i0f jf j0f i-j = ⊥-elim (div1 k>1 (proj1 i-j)) -- can't happen
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
290 gcd-gt (suc (suc i)) i0 zero zero k k>1 if i0f jf j0f i-j = i0f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
291 gcd-gt (suc (suc i)) i0 zero (suc j0) k k>1 if i0f jf j0f i-j = --
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
292 gcd-gt (suc i) (suc (suc i)) j0 (suc j0) k k>1 (decf if) (proj1 i-j) (decf (DtoF j0f)) j0f (div-div k>1 (proj1 i-j) j0f )
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
293 gcd-gt (suc zero) i0 (suc j) j0 k k>1 if i0f jf j0f i-j =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
294 gcd-gt zero i0 j j0 k k>1 (decf if) i0f (decf jf) j0f i-j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
295 gcd-gt (suc (suc i)) i0 (suc j) j0 k k>1 if i0f jf j0f i-j =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 195
diff changeset
296 gcd-gt (suc i) i0 j j0 k k>1 (decf if) i0f (decf jf) j0f i-j
164
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 162
diff changeset
297
194
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 193
diff changeset
298 gcd-div : ( i j k : ℕ ) → k > 1 → (if : Dividable k i) (jf : Dividable k j )
186
08f4ec41ea93 even→gcd
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 185
diff changeset
299 → Dividable k ( gcd i j )
197
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 196
diff changeset
300 gcd-div i j k k>1 if jf = gcd-gt i i j j k k>1 (DtoF if) if (DtoF jf) jf (div-div k>1 if jf)
143
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 142
diff changeset
301
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
302 gcd-dividable : ( i j : ℕ )
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
303 → Dividable ( gcd i j ) i ∧ Dividable ( gcd i j ) j
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
304 gcd-dividable i j = f-induction {_} {_} {ℕ ∧ ℕ}
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
305 {λ p → Dividable ( gcd (proj1 p) (proj2 p) ) (proj1 p) ∧ Dividable ( gcd (proj1 p) (proj2 p) ) (proj2 p)} F I ⟪ i , j ⟫ where
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
306 F : ℕ ∧ ℕ → ℕ
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
307 F ⟪ 0 , 0 ⟫ = 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
308 F ⟪ 0 , suc j ⟫ = 0
222
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 221
diff changeset
309 F ⟪ suc i , 0 ⟫ = 0
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
310 F ⟪ suc i , suc j ⟫ with <-cmp i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
311 ... | tri< a ¬b ¬c = suc j
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
312 ... | tri≈ ¬a b ¬c = 0
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
313 ... | tri> ¬a ¬b c = suc i
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
314 F0 : { i j : ℕ } → F ⟪ i , j ⟫ ≡ 0 → (i ≡ j) ∨ (i ≡ 0 ) ∨ (j ≡ 0)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
315 F0 {zero} {zero} p = case1 refl
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
316 F0 {zero} {suc j} p = case2 (case1 refl)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
317 F0 {suc i} {zero} p = case2 (case2 refl)
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
318 F0 {suc i} {suc j} p with <-cmp i j
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
319 ... | tri< a ¬b ¬c = ⊥-elim ( nat-≡< (sym p) (s≤s z≤n ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
320 ... | tri≈ ¬a refl ¬c = case1 refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
321 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym p) (s≤s z≤n ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
322 F00 : {p : ℕ ∧ ℕ} → F p ≡ zero → Dividable (gcd (proj1 p) (proj2 p)) (proj1 p) ∧ Dividable (gcd (proj1 p) (proj2 p)) (proj2 p)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
323 F00 {⟪ i , j ⟫} eq with F0 {i} {j} eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
324 ... | case1 refl = ⟪ subst (λ k → Dividable k i) (sym (gcdmm i i)) div= , subst (λ k → Dividable k i) (sym (gcdmm i i)) div= ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
325 ... | case2 (case1 refl) = ⟪ subst (λ k → Dividable k i) (sym (trans (gcdsym {0} {j} ) (gcd20 j)))div0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
326 , subst (λ k → Dividable k j) (sym (trans (gcdsym {0} {j}) (gcd20 j))) div= ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
327 ... | case2 (case2 refl) = ⟪ subst (λ k → Dividable k i) (sym (gcd20 i)) div=
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
328 , subst (λ k → Dividable k j) (sym (gcd20 i)) div0 ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
329 Fsym : {i j : ℕ } → F ⟪ i , j ⟫ ≡ F ⟪ j , i ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
330 Fsym {0} {0} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
331 Fsym {0} {suc j} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
332 Fsym {suc i} {0} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
333 Fsym {suc i} {suc j} with <-cmp i j | <-cmp j i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
334 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ⊥-elim (nat-<> a a₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
335 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (¬b (sym b))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
336 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
337 ... | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = ⊥-elim (¬b refl)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
338 ... | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
339 ... | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = ⊥-elim (¬b refl)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
340 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
341 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (¬b (sym b))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
342 ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (nat-<> c c₁)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
343
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
344 record Fdec ( i j : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
345 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
346 ni : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
347 nj : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
348 fdec : 0 < F ⟪ i , j ⟫ → F ⟪ ni , nj ⟫ < F ⟪ i , j ⟫
214
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
349
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
350 fd1 : ( i j k : ℕ ) → i < j → k ≡ j - i → F ⟪ suc i , k ⟫ < F ⟪ suc i , suc j ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
351 fd1 i j 0 i<j eq = ⊥-elim ( nat-≡< eq (minus>0 {i} {j} i<j ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
352 fd1 i j (suc k) i<j eq = fd2 i j k i<j eq where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
353 fd2 : ( i j k : ℕ ) → i < j → suc k ≡ j - i → F ⟪ suc i , suc k ⟫ < F ⟪ suc i , suc j ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
354 fd2 i j k i<j eq with <-cmp i k | <-cmp i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
355 ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = fd3 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
356 fd3 : suc k < suc j -- suc j - suc i < suc j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
357 fd3 = subst (λ g → g < suc j) (sym eq) (y-x<y {suc i} {suc j} (s≤s z≤n) (s≤s z≤n))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
358 ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim (⊥-elim (¬a i<j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
359 ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = ⊥-elim (⊥-elim (¬a i<j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
360 ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
361 ... | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = ⊥-elim (¬a₁ i<j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
362 ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = s≤s z≤n -- i > j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
363 ... | tri> ¬a ¬b c | tri< a ¬b₁ ¬c = fd4 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
364 fd4 : suc i < suc j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
365 fd4 = s≤s a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
366 ... | tri> ¬a ¬b c | tri≈ ¬a₁ b ¬c = ⊥-elim (¬a₁ i<j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
367 ... | tri> ¬a ¬b c | tri> ¬a₁ ¬b₁ c₁ = ⊥-elim (¬a₁ i<j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
368
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
369 fedc0 : (i j : ℕ ) → Fdec i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
370 fedc0 0 0 = record { ni = 0 ; nj = 0 ; fdec = λ () }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
371 fedc0 (suc i) 0 = record { ni = suc i ; nj = 0 ; fdec = λ () }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
372 fedc0 0 (suc j) = record { ni = 0 ; nj = suc j ; fdec = λ () }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
373 fedc0 (suc i) (suc j) with <-cmp i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
374 ... | tri< i<j ¬b ¬c = record { ni = suc i ; nj = j - i ; fdec = λ lt → fd1 i j (j - i) i<j refl }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
375 ... | tri≈ ¬a refl ¬c = record { ni = suc i ; nj = suc j ; fdec = λ lt → ⊥-elim (nat-≡< fd0 lt) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
376 fd0 : {i : ℕ } → 0 ≡ F ⟪ suc i , suc i ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
377 fd0 {i} with <-cmp i i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
378 ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
379 ... | tri≈ ¬a b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
380 ... | tri> ¬a ¬b c = ⊥-elim ( ¬b refl )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
381 ... | tri> ¬a ¬b c = record { ni = i - j ; nj = suc j ; fdec = λ lt →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
382 subst₂ (λ s t → s < t) (Fsym {suc j} {i - j}) (Fsym {suc j} {suc i}) (fd1 j i (i - j) c refl ) }
214
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
383
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
384 ind3 : {i j : ℕ } → i < j
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
385 → Dividable (gcd (suc i) (j - i)) (suc i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
386 → Dividable (gcd (suc i) (suc j)) (suc i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
387 ind3 {i} {j} a prev =
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
388 subst (λ k → Dividable k (suc i)) ( begin
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
389 gcd (suc i) (j - i) ≡⟨ gcdsym {suc i} {j - i} ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
390 gcd (j - i ) (suc i) ≡⟨ sym (gcd+j (j - i) (suc i)) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
391 gcd ((j - i) + suc i) (suc i) ≡⟨ cong (λ k → gcd k (suc i)) ( begin
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
392 (suc j - suc i) + suc i ≡⟨ minus+n {suc j} {suc i} (<-trans ( s≤s a) a<sa ) ⟩ -- i ≤ n → suc (suc i) ≤ suc (suc (suc n))
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
393 suc j ∎ ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
394 gcd (suc j) (suc i) ≡⟨ gcdsym {suc j} {suc i} ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
395 gcd (suc i) (suc j) ∎ ) prev where open ≡-Reasoning
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
396 ind7 : {i j : ℕ } → (i < j ) → (j - i) + suc i ≡ suc j
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
397 ind7 {i} {j} a = begin (suc j - suc i) + suc i ≡⟨ minus+n {suc j} {suc i} (<-trans (s≤s a) a<sa) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
398 suc j ∎ where open ≡-Reasoning
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
399 ind6 : {i j k : ℕ } → i < j
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
400 → Dividable k (j - i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
401 → Dividable k (suc i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
402 → Dividable k (suc j)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
403 ind6 {i} {j} {k} i<j dj di = subst (λ g → Dividable k g ) (ind7 i<j) (proj1 (div+div dj di))
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
404 ind4 : {i j : ℕ } → i < j
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
405 → Dividable (gcd (suc i) (j - i)) (j - i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
406 → Dividable (gcd (suc i) (suc j)) (j - i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
407 ind4 {i} {j} i<j prev = subst (λ k → k) ( begin
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
408 Dividable (gcd (suc i) (j - i)) (j - i) ≡⟨ cong (λ k → Dividable k (j - i)) (gcdsym {suc i} ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
409 Dividable (gcd (j - i ) (suc i) ) (j - i) ≡⟨ cong (λ k → Dividable k (j - i)) ( sym (gcd+j (j - i) (suc i))) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
410 Dividable (gcd ((j - i) + suc i) (suc i)) (j - i) ≡⟨ cong (λ k → Dividable (gcd k (suc i)) (j - i)) (ind7 i<j ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
411 Dividable (gcd (suc j) (suc i)) (j - i) ≡⟨ cong (λ k → Dividable k (j - i)) (gcdsym {suc j} ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
412 Dividable (gcd (suc i) (suc j)) (j - i) ∎ ) prev where open ≡-Reasoning
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
413
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
414 ind : ( i j : ℕ ) →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
415 Dividable (gcd (Fdec.ni (fedc0 i j)) (Fdec.nj (fedc0 i j))) (Fdec.ni (fedc0 i j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
416 ∧ Dividable (gcd (Fdec.ni (fedc0 i j)) (Fdec.nj (fedc0 i j))) (Fdec.nj (fedc0 i j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
417 → Dividable (gcd i j) i ∧ Dividable (gcd i j) j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
418 ind zero zero prev = ind0 where
210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 209
diff changeset
419 ind0 : Dividable (gcd zero zero) zero ∧ Dividable (gcd zero zero) zero
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
420 ind0 = ⟪ div0 , div0 ⟫
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
421 ind zero (suc j) prev = ind1 where
210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 209
diff changeset
422 ind1 : Dividable (gcd zero (suc j)) zero ∧ Dividable (gcd zero (suc j)) (suc j)
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
423 ind1 = ⟪ div0 , subst (λ k → Dividable k (suc j)) (sym (trans (gcdsym {zero} {suc j}) (gcd20 (suc j)))) div= ⟫
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
424 ind (suc i) zero prev = ind2 where
210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 209
diff changeset
425 ind2 : Dividable (gcd (suc i) zero) (suc i) ∧ Dividable (gcd (suc i) zero) zero
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
426 ind2 = ⟪ subst (λ k → Dividable k (suc i)) (sym (trans refl (gcd20 (suc i)))) div= , div0 ⟫
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
427 ind (suc i) (suc j) prev with <-cmp i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
428 ... | tri< a ¬b ¬c = ⟪ ind3 a (proj1 prev) , ind6 a (ind4 a (proj2 prev)) (ind3 a (proj1 prev) ) ⟫ where
213
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
429 ... | tri≈ ¬a refl ¬c = ⟪ ind5 , ind5 ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
430 ind5 : Dividable (gcd (suc i) (suc i)) (suc i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 212
diff changeset
431 ind5 = subst (λ k → Dividable k (suc j)) (sym (gcdmm (suc i) (suc i))) div=
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
432 ... | tri> ¬a ¬b c = ⟪ ind8 c (proj1 prev) (proj2 prev) , ind10 c (proj2 prev) ⟫ where
214
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
433 ind9 : {i j : ℕ} → i < j → gcd (j - i) (suc i) ≡ gcd (suc j) (suc i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
434 ind9 {i} {j} i<j = begin
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
435 gcd (j - i ) (suc i) ≡⟨ sym (gcd+j (j - i ) (suc i) ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
436 gcd (j - i + suc i) (suc i) ≡⟨ cong (λ k → gcd k (suc i)) (ind7 i<j ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
437 gcd (suc j) (suc i) ∎ where open ≡-Reasoning
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
438 ind8 : { i j : ℕ } → i < j
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
439 → Dividable (gcd (j - i) (suc i)) (j - i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
440 → Dividable (gcd (j - i) (suc i)) (suc i)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
441 → Dividable (gcd (suc j) (suc i)) (suc j)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
442 ind8 {i} {j} i<j dji di = ind6 i<j (subst (λ k → Dividable k (j - i)) (ind9 i<j) dji) (subst (λ k → Dividable k (suc i)) (ind9 i<j) di)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
443 ind10 : { i j : ℕ } → j < i
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
444 → Dividable (gcd (i - j) (suc j)) (suc j)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
445 → Dividable (gcd (suc i) (suc j)) (suc j)
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
446 ind10 {i} {j} j<i dji = subst (λ g → Dividable g (suc j) ) (begin
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
447 gcd (i - j) (suc j) ≡⟨ sym (gcd+j (i - j) (suc j)) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
448 gcd (i - j + suc j) (suc j) ≡⟨ cong (λ k → gcd k (suc j)) (ind7 j<i ) ⟩
906b43b94228 gcd-dividable done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 213
diff changeset
449 gcd (suc i) (suc j) ∎ ) dji where open ≡-Reasoning
210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 209
diff changeset
450
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
451 I : Finduction (ℕ ∧ ℕ) _ F
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
452 I = record {
224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
453 fzero = F00
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
454 ; pnext = λ p → ⟪ Fdec.ni (fedc0 (proj1 p) (proj2 p)) , Fdec.nj (fedc0 (proj1 p) (proj2 p)) ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
455 ; decline = λ {p} lt → Fdec.fdec (fedc0 (proj1 p) (proj2 p)) lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 223
diff changeset
456 ; ind = λ {p} prev → ind (proj1 p ) ( proj2 p ) prev
209
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
457 }
1c537e2b8f69 ... f-induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 208
diff changeset
458
206
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 205
diff changeset
459
167
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
460 gcdmul+1 : ( m n : ℕ ) → gcd (m * n + 1) n ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
461 gcdmul+1 zero n = gcd204 n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
462 gcdmul+1 (suc m) n = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
463 gcd (suc m * n + 1) n ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
464 gcd (n + m * n + 1) n ≡⟨ cong (λ k → gcd k n ) (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
465 n + m * n + 1 ≡⟨ cong (λ k → k + 1) (+-comm n _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
466 m * n + n + 1 ≡⟨ +-assoc (m * n) _ _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
467 m * n + (n + 1) ≡⟨ cong (λ k → m * n + k) (+-comm n _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
468 m * n + (1 + n) ≡⟨ sym ( +-assoc (m * n) _ _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
469 m * n + 1 + n ∎
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
470 ) ⟩
212
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 211
diff changeset
471 gcd (m * n + 1 + n) n ≡⟨ gcd+j (m * n + 1) n ⟩
167
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
472 gcd (m * n + 1) n ≡⟨ gcdmul+1 m n ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
473 1 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 166
diff changeset
474
205
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
475 gcd>0 : ( i j : ℕ ) → 0 < i → 0 < j → 0 < gcd i j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
476 gcd>0 i j 0<i 0<j = gcd>01 i i j j 0<i 0<j where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
477 gcd>01 : ( i i0 j j0 : ℕ ) → 0 < i0 → 0 < j0 → gcd1 i i0 j j0 > 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
478 gcd>01 zero i0 zero j0 0<i 0<j with <-cmp i0 j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
479 ... | tri< a ¬b ¬c = 0<i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
480 ... | tri≈ ¬a refl ¬c = 0<i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
481 ... | tri> ¬a ¬b c = 0<j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
482 gcd>01 zero i0 (suc zero) j0 0<i 0<j = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
483 gcd>01 zero zero (suc (suc j)) j0 0<i 0<j = 0<j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
484 gcd>01 zero (suc i0) (suc (suc j)) j0 0<i 0<j = gcd>01 i0 (suc i0) (suc j) (suc (suc j)) 0<i (s≤s z≤n) -- 0 < suc (suc j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
485 gcd>01 (suc zero) i0 zero j0 0<i 0<j = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
486 gcd>01 (suc (suc i)) i0 zero zero 0<i 0<j = 0<i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
487 gcd>01 (suc (suc i)) i0 zero (suc j0) 0<i 0<j = gcd>01 (suc i) (suc (suc i)) j0 (suc j0) (s≤s z≤n) 0<j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
488 gcd>01 (suc i) i0 (suc j) j0 0<i 0<j = subst (λ k → 0 < k ) (sym (gcd033 i i0 j j0 )) (gcd>01 i i0 j j0 0<i 0<j ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
489 gcd033 : (i i0 j j0 : ℕ) → gcd1 (suc i) i0 (suc j) j0 ≡ gcd1 i i0 j j0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
490 gcd033 zero zero zero zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
491 gcd033 zero zero (suc j) zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
492 gcd033 (suc i) zero j zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
493 gcd033 zero zero zero (suc j0) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
494 gcd033 (suc i) zero zero (suc j0) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
495 gcd033 zero zero (suc j) (suc j0) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
496 gcd033 (suc i) zero (suc j) (suc j0) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
497 gcd033 zero (suc i0) j j0 = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 199
diff changeset
498 gcd033 (suc i) (suc i0) j j0 = refl
227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
499
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
500 --gcd-dividable : ( i j : ℕ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
501 -- → Dividable ( gcd i j ) i ∧ Dividable ( gcd i j ) j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
502
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
503 f-div>0 : { k i : ℕ } → (d : Dividable k i ) → 0 < i → 0 < Dividable.factor d
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
504 f-div>0 {k} {i} d 0<i with <-cmp 0 (Dividable.factor d)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
505 ... | tri< a ¬b ¬c = a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
506 ... | tri≈ ¬a b ¬c = ⊥-elim ( nat-≡< (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
507 0 * k + 0 ≡⟨ cong (λ g → g * k + 0) b ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
508 Dividable.factor d * k + 0 ≡⟨ Dividable.is-factor d ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
509 i ∎ ) 0<i ) where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
510
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
511 gcd-≤ : ( i j : ℕ ) → i ≤ j → gcd i j ≤ j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
512 gcd-≤ zero zero z≤n = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
513 gcd-≤ 0 (suc j) z≤n = subst (λ k → k ≤ suc j ) (trans (sym (gcd20 (suc j))) (gcdsym {suc j} {zero})) ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
514 gcd-≤ (suc i) (suc j) (s≤s i<j) = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
515 gcd (suc i) (suc j) ≡⟨ sym m*1=m ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
516 gcd (suc i) (suc j) * 1 ≤⟨ *-monoʳ-≤ (gcd (suc i) (suc j)) (f-div>0 d (s≤s z≤n)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
517 gcd (suc i) (suc j) * f ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
518 gcd (suc i) (suc j) * f + 0 ≡⟨ cong (λ k → k + 0) (*-comm (gcd (suc i) (suc j)) _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
519 Dividable.factor (proj2 (gcd-dividable (suc i) (suc j))) * gcd (suc i) (suc j) + 0 ≡⟨ Dividable.is-factor (proj2 (gcd-dividable (suc i) (suc j))) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
520 suc j ∎ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
521 d = proj2 (gcd-dividable (suc i) (suc j))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
522 f = Dividable.factor (proj2 (gcd-dividable (suc i) (suc j)))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
523 open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
524
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
525 m*n=m→n : {m n : ℕ } → 0 < m → m * n ≡ m * 1 → n ≡ 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
526 m*n=m→n {suc m} {n} (s≤s lt) eq = *-cancelˡ-≡ m eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
527
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
528 gcd-< : ( i j : ℕ ) → 0 < i → i < j → gcd i j < j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
529 gcd-< i j 0<i i<j with <-cmp ( gcd i j ) j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
530 ... | tri< a ¬b ¬c = a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
531 ... | tri≈ ¬a b ¬c = ⊥-elim (g111 (Dividable.factor (proj1 (gcd-dividable i j)))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
532 (subst (λ k → (Dividable.factor (proj1 (gcd-dividable i j))) * k + 0 ≡ i ) b (Dividable.is-factor (proj1 (gcd-dividable i j))))) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
533 g111 : (f : ℕ) → f * j + 0 ≡ i → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
534 g111 zero eq = nat-≡< eq 0<i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
535 g111 (suc zero) eq = nat-≡< (sym eq) (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
536 suc i ≤⟨ i<j ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
537 j ≡⟨ trans (+-comm 0 _) (+-comm 0 _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
538 1 * j + 0 ∎ ) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
539 g111 (suc (suc f)) eq = nat-≡< (sym eq) ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
540 suc i ≤⟨ i<j ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
541 j ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
542 j + 0 ≤⟨ +-monoʳ-≤ j z≤n ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
543 j + ((j + f * j) + 0) ≡⟨ sym (+-assoc j _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
544 j + (j + f * j) + 0 ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
545 suc (suc f) * j + 0 ∎ ) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 224
diff changeset
546 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> (gcd-≤ i j (<to≤ i<j)) c )