Mercurial > hg > Members > kono > Proof > automaton
comparison automaton-in-agda/src/root2.agda @ 324:329adb1b71c7
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 14 Jan 2022 22:58:25 +0900 |
parents | 7f806a28a866 |
children | 39f0e1d7a7e5 |
comparison
equal
deleted
inserted
replaced
323:7f806a28a866 | 324:329adb1b71c7 |
---|---|
217 r04 = begin | 217 r04 = begin |
218 1 ≡⟨ sym (Prime.isPrime pr _ {!!} {!!} ) ⟩ | 218 1 ≡⟨ sym (Prime.isPrime pr _ {!!} {!!} ) ⟩ |
219 gcd p i ≡⟨ r02 r01 ⟩ | 219 gcd p i ≡⟨ r02 r01 ⟩ |
220 i ∎ where open ≡-Reasoning | 220 i ∎ where open ≡-Reasoning |
221 ... | tri> ¬a ¬b c with <-cmp (Rational.i r) 1 | 221 ... | tri> ¬a ¬b c with <-cmp (Rational.i r) 1 |
222 ... | tri< a ¬b₁ ¬c = {!!} where | 222 ... | tri< a ¬b₁ ¬c = ⊥-elim ( nat-≡< (sym r05) r08) where |
223 i = Rational.i r | 223 i = Rational.i r |
224 j = Rational.j r | 224 j = Rational.j r |
225 r00 : p * j * j ≡ i * i | 225 r00 : p * j * j ≡ i * i |
226 r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div | 226 r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div |
227 r06 : i ≡ 0 | 227 r06 : i ≡ 0 |
228 r06 = {!!} | 228 r06 with <-cmp i 0 |
229 r05 : p * j * j ≡ i * i -- j > 0 → p * j * j > 0 | 229 ... | tri≈ ¬a b ¬c = b |
230 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c a ) | |
231 r05 : p * j * j ≡ 0 | |
230 r05 = {!!} | 232 r05 = {!!} |
231 ... | tri≈ ¬a₁ b ¬c = {!!} where | 233 r08 : p * j * j > 0 |
234 r08 = {!!} | |
235 ... | tri≈ ¬a₁ b ¬c = ⊥-elim ( nat-≡< (sym r07) r09) where | |
232 i = Rational.i r | 236 i = Rational.i r |
233 j = Rational.j r | 237 j = Rational.j r |
234 r00 : p * j * j ≡ i * i | 238 r00 : p * j * j ≡ i * i |
235 r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div | 239 r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div |
236 r07 : p * j * j ≡ i * i -- j > 0 → p * j * j > 0 | 240 r07 : p * j * j ≡ 1 |
237 r07 = {!!} | 241 r07 = {!!} |
242 r09 : 1 < p * j * j | |
243 r09 = {!!} | |
238 ... | tri> ¬a₁ ¬b₁ c₁ = root-prime-irrational (Rational.j r) (Rational.i r) p c pr c₁ (r3 p (<-trans a<sa (Prime.p>1 pr ) ) r div) | 244 ... | tri> ¬a₁ ¬b₁ c₁ = root-prime-irrational (Rational.j r) (Rational.i r) p c pr c₁ (r3 p (<-trans a<sa (Prime.p>1 pr ) ) r div) |
239 (trans (GCD.gcdsym {Rational.j r} {_} ) (Rational.coprime r) ) | 245 (trans (GCD.gcdsym {Rational.j r} {_} ) (Rational.coprime r) ) |