Mercurial > hg > Members > kono > Proof > automaton
view automaton-in-agda/src/root2.agda @ 324:329adb1b71c7
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 14 Jan 2022 22:58:25 +0900 |
parents | 7f806a28a866 |
children | 39f0e1d7a7e5 |
line wrap: on
line source
module root2 where open import Data.Nat open import Data.Nat.Properties open import Data.Empty open import Data.Unit using (⊤ ; tt) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Definitions import gcd as GCD open import even open import nat open import logic record Rational : Set where field i j : ℕ 0<j : j > 0 coprime : GCD.gcd i j ≡ 1 -- record Dividable (n m : ℕ ) : Set where -- field -- factor : ℕ -- is-factor : factor * n + 0 ≡ m gcd : (i j : ℕ) → ℕ gcd = GCD.gcd gcd-euclid : ( p a b : ℕ ) → 1 < p → 0 < a → 0 < b → ((i : ℕ ) → i < p → 0 < i → gcd p i ≡ 1) → Dividable p (a * b) → Dividable p a ∨ Dividable p b gcd-euclid = GCD.gcd-euclid gcd-div1 : ( i j k : ℕ ) → k > 1 → (if : Dividable k i) (jf : Dividable k j ) → Dividable k ( gcd i j ) gcd-div1 = GCD.gcd-div open _∧_ open import prime divdable^2 : ( n k : ℕ ) → 1 < k → 1 < n → Prime k → Dividable k ( n * n ) → Dividable k n divdable^2 zero zero () 1<n pk dn2 divdable^2 (suc n) (suc k) 1<k 1<n pk dn2 with decD {suc k} {suc n} 1<k ... | yes y = y ... | no non with gcd-euclid (suc k) (suc n) (suc n) 1<k (<-trans a<sa 1<n) (<-trans a<sa 1<n) (Prime.isPrime pk) dn2 ... | case1 dn = dn ... | case2 dm = dm -- p * n * n ≡ m * m means (m/n)^2 = p -- rational m/n requires m and n is comprime each other which contradicts the condition root-prime-irrational : ( n m p : ℕ ) → n > 1 → Prime p → m > 1 → p * n * n ≡ m * m → ¬ (gcd n m ≡ 1) root-prime-irrational n m 0 n>1 pn m>1 pnm = ⊥-elim ( nat-≡< refl (<-trans a<sa (Prime.p>1 pn))) root-prime-irrational n m (suc p0) n>1 pn m>1 pnm = rot13 ( gcd-div1 n m (suc p0) 1<sp dn dm ) where p = suc p0 1<sp : 1 < p 1<sp = Prime.p>1 pn rot13 : {m : ℕ } → Dividable (suc p0) m → m ≡ 1 → ⊥ rot13 d refl with Dividable.factor d | Dividable.is-factor d ... | zero | () -- gcd 0 m ≡ 1 ... | suc n | x = ⊥-elim ( nat-≡< (sym x) rot17 ) where -- x : (suc n * p + 0) ≡ 1 rot17 : suc n * (suc p0) + 0 > 1 rot17 = begin 2 ≡⟨ refl ⟩ suc (1 * 1 ) ≤⟨ 1<sp ⟩ suc p0 ≡⟨ cong suc (+-comm 0 _) ⟩ suc (p0 + 0) ≤⟨ s≤s (+-monoʳ-≤ p0 z≤n) ⟩ suc (p0 + n * p ) ≡⟨ +-comm 0 _ ⟩ suc n * p + 0 ∎ where open ≤-Reasoning dm : Dividable p m dm = divdable^2 m p 1<sp m>1 pn record { factor = n * n ; is-factor = begin (n * n) * p + 0 ≡⟨ +-comm _ 0 ⟩ (n * n) * p ≡⟨ *-comm (n * n) p ⟩ p * (n * n) ≡⟨ sym (*-assoc p n n) ⟩ (p * n) * n ≡⟨ pnm ⟩ m * m ∎ } where open ≡-Reasoning -- p * n * n = 2m' 2m' -- n * n = m' 2m' df = Dividable.factor dm dn : Dividable p n dn = divdable^2 n p 1<sp n>1 pn record { factor = df * df ; is-factor = begin df * df * p + 0 ≡⟨ *-cancelʳ-≡ _ _ {p0} ( begin (df * df * p + 0) * p ≡⟨ cong (λ k → k * p) (+-comm (df * df * p) 0) ⟩ ((df * df) * p ) * p ≡⟨ cong (λ k → k * p) (*-assoc df df p ) ⟩ (df * (df * p)) * p ≡⟨ cong (λ k → (df * k ) * p) (*-comm df p) ⟩ (df * (p * df)) * p ≡⟨ sym ( cong (λ k → k * p) (*-assoc df p df ) ) ⟩ ((df * p) * df) * p ≡⟨ *-assoc (df * p) df p ⟩ (df * p) * (df * p) ≡⟨ cong₂ (λ j k → j * k ) (+-comm 0 (df * p)) (+-comm 0 _) ⟩ (df * p + 0) * (df * p + 0) ≡⟨ cong₂ (λ j k → j * k) (Dividable.is-factor dm ) (Dividable.is-factor dm )⟩ m * m ≡⟨ sym pnm ⟩ p * n * n ≡⟨ cong (λ k → k * n) (*-comm p n) ⟩ n * p * n ≡⟨ *-assoc n p n ⟩ n * (p * n) ≡⟨ cong (λ k → n * k) (*-comm p n) ⟩ n * (n * p) ≡⟨ sym (*-assoc n n p) ⟩ n * n * p ∎ ) ⟩ n * n ∎ } where open ≡-Reasoning mkRational : ( i j : ℕ ) → 0 < j → Rational mkRational zero j 0<j = record { i = 0 ; j = 1 ; coprime = refl ; 0<j = s≤s z≤n } mkRational (suc i) (suc j) (s≤s 0<j) = record { i = Dividable.factor id ; j = Dividable.factor jd ; coprime = cop ; 0<j = 0<fj } where d : ℕ d = gcd (suc i) (suc j) d>0 : gcd (suc i) (suc j) > 0 d>0 = GCD.gcd>0 (suc i) (suc j) (s≤s z≤n) (s≤s z≤n ) id : Dividable d (suc i) id = proj1 (GCD.gcd-dividable (suc i) (suc j)) jd : Dividable d (suc j) jd = proj2 (GCD.gcd-dividable (suc i) (suc j)) 0<fj : Dividable.factor jd > 0 0<fj = 0<factor d>0 (s≤s z≤n ) jd cop : gcd (Dividable.factor id) (Dividable.factor jd) ≡ 1 cop = GCD.gcd-div-1 {suc i} {suc j} (s≤s z≤n) (s≤s z≤n ) r1 : {x y : ℕ} → x > 0 → y > 0 → x * y > 0 r1 {x} {y} x>0 y>0 = begin 1 * 1 ≤⟨ *≤ {1} {x} {1} x>0 ⟩ x * 1 ≡⟨ *-comm x 1 ⟩ 1 * x ≤⟨ *≤ {1} {y} {x} y>0 ⟩ y * x ≡⟨ *-comm y x ⟩ x * y ∎ where open ≤-Reasoning Rational* : (r s : Rational) → Rational Rational* r s = mkRational (Rational.i r * Rational.i s) (Rational.j r * Rational.j s) (r1 (Rational.0<j r) (Rational.0<j s) ) _r=_ : Rational → ℕ → Set r r= p = p * Rational.j r ≡ Rational.i r r3 : ( p : ℕ ) → p > 0 → ( r : Rational ) → Rational* r r r= p → p * Rational.j r * Rational.j r ≡ Rational.i r * Rational.i r r3 p p>0 r rr = r4 where i : ℕ i = Rational.i r * Rational.i r j : ℕ j = Rational.j r * Rational.j r 0<j : 0 < j 0<j = r1 (Rational.0<j r) (Rational.0<j r) d1 = Dividable.factor (proj1 (GCD.gcd-dividable i j)) d2 = Dividable.factor (proj2 (GCD.gcd-dividable i j)) ri=id : ( i j : ℕ) → (0<i : 0 < i ) → (0<j : 0 < j) → Rational.i (mkRational i j 0<j) ≡ Dividable.factor (proj1 (GCD.gcd-dividable i j)) ri=id (suc i₁) (suc j₁) 0<i (s≤s 0<j₁) = refl ri=jd : ( i j : ℕ) → (0<i : 0 < i ) → (0<j : 0 < j) → Rational.j (mkRational i j 0<j) ≡ Dividable.factor (proj2 (GCD.gcd-dividable i j)) ri=jd (suc i₁) (suc j₁) 0<i (s≤s 0<j₁) = refl r0=id : ( i j : ℕ) → (0=i : 0 ≡ i ) → (0<j : 0 < j) → Rational.i (mkRational i j 0<j) ≡ 0 r0=id 0 j refl 0<j = refl r0=jd : ( i j : ℕ) → (0=i : 0 ≡ i ) → (0<j : 0 < j) → Rational.j (mkRational i j 0<j) ≡ 1 r0=jd 0 j refl 0<j = refl d : ℕ d = gcd i j r7 : i > 0 → d > 0 r7 0<i = GCD.gcd>0 _ _ 0<i 0<j r6 : i > 0 → d2 > 0 r6 0<i = 0<factor (r7 0<i ) 0<j (proj2 (GCD.gcd-dividable i j)) r8 : 0 < i → d2 * p ≡ d1 r8 0<i = begin d2 * p ≡⟨ *-comm d2 p ⟩ p * d2 ≡⟨ cong (λ k → p * k ) (sym (ri=jd i j 0<i 0<j )) ⟩ p * Rational.j (mkRational i j _ ) ≡⟨ rr ⟩ Rational.i (Rational* r r) ≡⟨ ri=id i j 0<i 0<j ⟩ d1 ∎ where open ≡-Reasoning r4 : p * Rational.j r * Rational.j r ≡ Rational.i r * Rational.i r r4 with <-cmp (Rational.i r * Rational.i r) 0 ... | tri≈ ¬a b ¬c = ⊥-elim (nat-≡< (begin 0 ≡⟨ sym (r0=id i j (sym b) 0<j ) ⟩ Rational.i (mkRational (Rational.i r * Rational.i r) (Rational.j r * Rational.j r) _ ) ≡⟨ sym rr ⟩ p * Rational.j (mkRational (Rational.i r * Rational.i r) (Rational.j r * Rational.j r) _ ) ≡⟨ cong (λ k → p * k ) (r0=jd i j (sym b) 0<j ) ⟩ p * 1 ≡⟨ m*1=m ⟩ p ∎ ) p>0 ) where open ≡-Reasoning ... | tri> ¬a ¬b c = begin p * Rational.j r * Rational.j r ≡⟨ *-cancel-left (r6 c) ( begin d2 * ((p * Rational.j r) * Rational.j r) ≡⟨ sym (*-assoc d2 _ _) ⟩ (d2 * ( p * Rational.j r )) * Rational.j r ≡⟨ cong (λ k → k * Rational.j r) (sym (*-assoc d2 _ _ )) ⟩ (d2 * p) * Rational.j r * Rational.j r ≡⟨ cong (λ k → k * Rational.j r * Rational.j r) (r8 c) ⟩ d1 * Rational.j r * Rational.j r ≡⟨ *-cancel-left (r7 c) ( begin d * ((d1 * Rational.j r) * Rational.j r) ≡⟨ cong (λ k → d * k ) (*-assoc d1 _ _ )⟩ d * (d1 * (Rational.j r * Rational.j r)) ≡⟨ sym (*-assoc d _ _) ⟩ (d * d1) * (Rational.j r * Rational.j r) ≡⟨ cong (λ k → k * j) (*-comm d _ ) ⟩ (d1 * d) * j ≡⟨ cong (λ k → k * j) (+-comm 0 (d1 * d) ) ⟩ (d1 * d + 0) * j ≡⟨ cong (λ k → k * j ) (Dividable.is-factor (proj1 (GCD.gcd-dividable i j)) ) ⟩ i * j ≡⟨ *-comm i j ⟩ j * i ≡⟨ cong (λ k → k * i ) (sym (Dividable.is-factor (proj2 (GCD.gcd-dividable i j))) ) ⟩ (d2 * GCD.gcd i j + 0) * i ≡⟨ cong (λ k → k * i ) (+-comm (d2 * d ) 0) ⟩ (d2 * d) * i ≡⟨ cong (λ k → k * i ) (*-comm d2 _ ) ⟩ (d * d2) * i ≡⟨ *-assoc d _ _ ⟩ d * (d2 * (Rational.i r * Rational.i r)) ∎ ) ⟩ d2 * (Rational.i r * Rational.i r) ∎ ) ⟩ Rational.i r * Rational.i r ∎ where open ≡-Reasoning root-prime-irrational1 : ( p : ℕ ) → Prime p → ( r : Rational ) → ¬ ( Rational* r r r= p ) root-prime-irrational1 p pr r div with <-cmp (Rational.j r) 1 ... | tri< a ¬b ¬c = ⊥-elim (nat-≤> (Rational.0<j r) a ) ... | tri≈ ¬a b ¬c = ⊥-elim (nat-≡< r04 (r03 r01)) where i = Rational.i r j = Rational.j r r00 : p * j * j ≡ i * i r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div r01 : p ≡ i * i r01 = begin p ≡⟨ sym m*1=m ⟩ p * 1 ≡⟨ sym m*1=m ⟩ p * 1 * 1 ≡⟨ cong (λ k → p * k * k ) (sym b) ⟩ p * j * j ≡⟨ r00 ⟩ i * i ∎ where open ≡-Reasoning r03 : p ≡ i * i → i > 1 r03 eq with <-cmp i 1 ... | tri< a ¬b ¬c = {!!} ... | tri≈ ¬a b ¬c = {!!} ... | tri> ¬a ¬b c = c r02 : p ≡ i * i → gcd p i ≡ i r02 eq = GCD.div→gcd (r03 r01) record { factor = i ; is-factor = trans (+-comm _ 0 ) (sym r01) } r04 : 1 ≡ i r04 = begin 1 ≡⟨ sym (Prime.isPrime pr _ {!!} {!!} ) ⟩ gcd p i ≡⟨ r02 r01 ⟩ i ∎ where open ≡-Reasoning ... | tri> ¬a ¬b c with <-cmp (Rational.i r) 1 ... | tri< a ¬b₁ ¬c = ⊥-elim ( nat-≡< (sym r05) r08) where i = Rational.i r j = Rational.j r r00 : p * j * j ≡ i * i r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div r06 : i ≡ 0 r06 with <-cmp i 0 ... | tri≈ ¬a b ¬c = b ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> c a ) r05 : p * j * j ≡ 0 r05 = {!!} r08 : p * j * j > 0 r08 = {!!} ... | tri≈ ¬a₁ b ¬c = ⊥-elim ( nat-≡< (sym r07) r09) where i = Rational.i r j = Rational.j r r00 : p * j * j ≡ i * i r00 = r3 p (<-trans a<sa (Prime.p>1 pr )) r div r07 : p * j * j ≡ 1 r07 = {!!} r09 : 1 < p * j * j r09 = {!!} ... | tri> ¬a₁ ¬b₁ c₁ = root-prime-irrational (Rational.j r) (Rational.i r) p c pr c₁ (r3 p (<-trans a<sa (Prime.p>1 pr ) ) r div) (trans (GCD.gcdsym {Rational.j r} {_} ) (Rational.coprime r) )