Mercurial > hg > Members > kono > Proof > automaton
changeset 366:19410aadd636
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Jul 2023 10:04:39 +0900 |
parents | c46f04f7c99a |
children | a84fe1bd564c 378a8d83bdd9 |
files | automaton-in-agda/src/derive.agda automaton-in-agda/src/fin.agda |
diffstat | 2 files changed, 39 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/derive.agda Fri Jul 21 12:01:16 2023 +0900 +++ b/automaton-in-agda/src/derive.agda Sat Jul 22 10:04:39 2023 +0900 @@ -3,7 +3,9 @@ open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.List hiding ( [_] ) +open import Data.Empty open import finiteSet +open import fin module derive ( Σ : Set) ( fin : FiniteSet Σ ) ( eq? : (x y : Σ) → Dec (x ≡ y)) where @@ -62,20 +64,28 @@ derive-step r d0 s = derive (is-derived d0) s regex→automaton : (r : Regex Σ) → Automaton (Derivative r) Σ -regex→automaton r = record { δ = λ d s → record { state = derivative (state d) s ; is-derived = derive-step r d s} +regex→automaton r = record { δ = λ d s → record { state = derivative (state d) s ; is-derived = derive (is-derived d) s} ; aend = λ d → empty? (state d) } regex-match : (r : Regex Σ) → (List Σ) → Bool regex-match ex is = accept ( regex→automaton ex ) record { state = ex ; is-derived = unit } is +open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + +D-cong : (r s : Regex Σ) → (x : Derivative r) (y : Derivative s) + → state x ≡ state y → is-derived x ≅ is-derived y → x ≅ y +D-cong = ? + +D-inject : (r : Regex Σ) → {x y : Derivative r} → x ≡ y +D-inject r {x} {y} = HE.≅-to-≡ (D-cong r r x y ? ? ) + -- open import nfa open import Data.Nat --- open import Data.Nat hiding ( _<_ ; _>_ ) --- open import Data.Fin hiding ( _<_ ) +open import Data.Nat.Properties open import nat open import finiteSetUtil open FiniteSet -open import Data.Fin hiding (_<_) +open import Data.Fin hiding (_<_ ; _≤_ ; pred ) -- finiteness of derivative -- term generate x & y for each * and & only once @@ -101,30 +111,28 @@ sb* : (x : Regex Σ) → (xn : ℕ) → SB x xn → SB (x *) (suc xn) sb& : (x y : Regex Σ) → (xn yn : ℕ) → xn < yn → ( sx : SB x xn ) (sy : SB y yn ) → SB (x & y) (suc yn) -sb-id : (r : Regex Σ) → SB r (rank r) → Bool -sb-id r sb with rank r | inspect rank r -sb-id ε sbε | zero | _ = true -sb-id φ sbφ | zero | _ = true -sb-id < t > (sb<> s) | zero | _ with eq? t s -... | yes _ = true -... | no _ = false -sb-id (x0 || y0) (sb| x y xn yn .zero sb sb₁ x₁) | zero | record { eq = eq1 } = sb-id x0 ? /\ sb-id y0 ? -sb-id _ (sb| x y xn yn .(suc k) sb sb₁ x₁) | suc k | record { eq = eq1 } = sb-id x ? /\ sb-id y ? -sb-id (y *) (sb* x t u) | suc k | record{ eq = eq1 } = sb-id y ? -sb-id (x0 & y0) (sb& .x0 .y0 xn .k x z z₁) | suc k | record { eq = eq1 } = sb-id x0 ? /\ sb-id y0 ? - open import bijection using ( InjectiveF ; Is ) finSBTA : (r : Regex Σ) → FiniteSet (SB r (rank r) → Bool) -finSBTA r = fin→ ( fb00 (rank r) r refl ) where - fb00 : (n : ℕ ) → (r : Regex Σ) → rank r ≡ n → FiniteSet (SB r (rank r)) - fb00 zero ε eq = record { finite = 1 ; Q←F = λ _ → sbε ; F←Q = λ _ → # 0 ; finiso→ = ? ; finiso← = ? } - fb00 zero φ eq = record { finite = 1 ; Q←F = λ _ → sbφ ; F←Q = λ _ → # 0 ; finiso→ = ? ; finiso← = ? } +finSBTA r = fin→ ( fb00 (rank r) r ≤-refl ) where + fb00 : (n : ℕ ) → (r : Regex Σ) → rank r ≤ n → FiniteSet (SB r (rank r)) + fb00 n ε eq = record { finite = 1 ; Q←F = λ _ → sbε ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where + fb01 : (q : SB ε 0) → sbε ≡ q + fb01 sbε = refl + fb00 zero φ eq = record { finite = 1 ; Q←F = λ _ → sbφ ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where + fb01 : (q : SB φ 0) → sbφ ≡ q + fb01 sbφ = refl fb00 zero (r || r₁) eq = iso-fin (fin-∨ (fb00 zero r ?) (fb00 zero r₁ ?)) ? - fb00 zero < x > eq = iso-fin fin ? + fb00 zero < x > eq = record { finite = 1 ; Q←F = λ _ → sb<> x ; F←Q = λ _ → # 0 ; finiso→ = fb01 ; finiso← = fin1≡0 } where + fb01 : (q : SB < x > 0) → sb<> x ≡ q + fb01 (sb<> x) = refl fb00 (suc n) (r *) eq = iso-fin (fb00 n r ?) ? fb00 (suc n) (r & r₁) eq = iso-fin (fin-∧ (fb00 n r ?) (fb00 n r₁ ?)) ? - fb00 (suc n) (r || r₁) eq = iso-fin (fin-∧ (fb00 (suc n) r ?) (fb00 (suc n) r₁ ?)) ? + fb00 (suc n) (r || r₁) eq = iso-fin (fin-∨ (fb00 (suc n) r ?) (fb00 (suc n) r₁ ?)) ? + fb00 zero (x *) () + fb00 zero (x & x₁) () + fb00 (suc n) φ z≤n = fb00 n φ z≤n + fb00 (suc n) < x > z≤n = fb00 n < x > z≤n record SBf (r : Regex Σ) (n : ℕ) : Set where field @@ -146,8 +154,13 @@ ... | false | record { eq = eq1} = no (λ n → ¬-bool {a sbε} eq1 (fl04 n)) where fl04 : Is (Derivative ε) (SB ε 0 → Bool) fb02 a → a sbε ≡ true fl04 n = sym (cong (λ k → k sbε) (Is.fa=c n)) + fl06 : (y : Regex Σ) → (s : Σ) → ¬ ( regex-states y ε ) + fl06 y s x with derivative y s | inspect (derivative y) s + ... | d | record { eq = eq1 } = ? fl05 : {x y : Derivative ε} → fb02 x ≡ fb02 y → x ≡ y - fl05 {x} {y} eq = ? + fl05 {x} {y} eq with is-derived x | inspect is-derived x + ... | unit | record { eq = eq1 } = ? + ... | derive e s | record { eq = eq1 } = ? SBN φ = ? SBN (r *) = ? SBN (r & r₁) = record { rank=n = ? ; f = ? ; sb-inject = ? ; dec = ? }
--- a/automaton-in-agda/src/fin.agda Fri Jul 21 12:01:16 2023 +0900 +++ b/automaton-in-agda/src/fin.agda Sat Jul 22 10:04:39 2023 +0900 @@ -51,6 +51,9 @@ open import Data.Nat.Properties as NatP hiding ( _≟_ ) +fin1≡0 : (f : Fin 1) → # 0 ≡ f +fin1≡0 zero = refl + fin+1≤ : { i n : ℕ } → (a : i < n) → fin+1 (fromℕ< a) ≡ fromℕ< (<-trans a a<sa) fin+1≤ {0} {suc i} (s≤s z≤n) = refl fin+1≤ {suc n} {suc (suc i)} (s≤s (s≤s a)) = cong (λ k → suc k ) ( fin+1≤ {n} {suc i} (s≤s a) )