Mercurial > hg > Members > kono > Proof > automaton
changeset 367:a84fe1bd564c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Jul 2023 11:10:23 +0900 |
parents | 19410aadd636 |
children | ad61f0a05f90 |
files | automaton-in-agda/src/derive.agda |
diffstat | 1 files changed, 12 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/automaton-in-agda/src/derive.agda Sat Jul 22 10:04:39 2023 +0900 +++ b/automaton-in-agda/src/derive.agda Sat Jul 22 11:10:23 2023 +0900 @@ -72,13 +72,6 @@ open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -D-cong : (r s : Regex Σ) → (x : Derivative r) (y : Derivative s) - → state x ≡ state y → is-derived x ≅ is-derived y → x ≅ y -D-cong = ? - -D-inject : (r : Regex Σ) → {x y : Derivative r} → x ≡ y -D-inject r {x} {y} = HE.≅-to-≡ (D-cong r r x y ? ? ) - -- open import nfa open import Data.Nat open import Data.Nat.Properties @@ -154,13 +147,19 @@ ... | false | record { eq = eq1} = no (λ n → ¬-bool {a sbε} eq1 (fl04 n)) where fl04 : Is (Derivative ε) (SB ε 0 → Bool) fb02 a → a sbε ≡ true fl04 n = sym (cong (λ k → k sbε) (Is.fa=c n)) - fl06 : (y : Regex Σ) → (s : Σ) → ¬ ( regex-states y ε ) - fl06 y s x with derivative y s | inspect (derivative y) s - ... | d | record { eq = eq1 } = ? + fl06 : (y : Regex Σ) → ¬ ( regex-states ε y ) + fl06 ε s = ? + fl06 φ s = ? + fl06 (r *) s = ? + fl06 (r & r₁) s = ? + fl06 (r || r₁) s = ? + fl06 < x > s = ? fl05 : {x y : Derivative ε} → fb02 x ≡ fb02 y → x ≡ y - fl05 {x} {y} eq with is-derived x | inspect is-derived x - ... | unit | record { eq = eq1 } = ? - ... | derive e s | record { eq = eq1 } = ? + fl05 {x} {y} eq with is-derived x | inspect is-derived x | is-derived y | inspect is-derived y + ... | unit | record { eq = refl } | unit | record { eq = refl } = refl + ... | unit | record { eq = refl } | derive s s₁ | record { eq = refl } = ⊥-elim (fl06 _ s) + ... | derive e s | record { eq = eq1 } | unit | t = ? + ... | derive e s | record { eq = refl } | derive s1 s₁ | record { eq = refl} = ? SBN φ = ? SBN (r *) = ? SBN (r & r₁) = record { rank=n = ? ; f = ? ; sb-inject = ? ; dec = ? }