Mercurial > hg > Members > kono > Proof > automaton
changeset 97:c1282e442d28
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 11 Nov 2019 13:00:45 +0900 |
parents | 3d362c31b97e |
children | f196e739b4bf |
files | agda/regular-language.agda |
diffstat | 1 files changed, 5 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/regular-language.agda Mon Nov 11 12:23:43 2019 +0900 +++ b/agda/regular-language.agda Mon Nov 11 13:00:45 2019 +0900 @@ -296,10 +296,9 @@ lemma11 : (q : states A ∨ states B) → exists finab (λ qn → nq qn /\ Nδ NFA qn h q) ≡ true → q ≡ case1 (δ (automaton A) qa h) - lemma11 q ex = lemma17 (subst (λ k → exists finab (λ qn → k qn ) ≡ true ) (f-extensionality finab (λ qn → sym (lemma19 qn) )) ex ) where - lemma19 = λ qn → cong ( λ k → nq qn /\ Nδ NFA k h q ) (sym ( qa=q qn (bool-∧→tt-0 {!!} ) )) + lemma11 q ex = lemma17 lemma19 where lemma17 : exists finab (λ qn → nq qn /\ Nδ NFA (case1 qa) h q) ≡ true → q ≡ case1 (δ (automaton A) qa h) - lemma17 = {!!} + lemma17 en = {!!} lemma18 : (qn : states A ∨ states B) → nq qn /\ Nδ NFA qn h q ≡ true → nq qn /\ Nδ NFA (case1 qa) h q ≡ true lemma18 qn eq = begin nq qn /\ Nδ NFA (case1 qa) h q @@ -308,6 +307,9 @@ ≡⟨ eq ⟩ true ∎ where open ≡-Reasoning + lemma19 : exists finab (λ qn → nq qn /\ Nδ NFA (case1 qa) h q) ≡ true + lemma19 = found finab fq ( (lemma18 fq (found-p ( found← finab ex )))) where + fq = found-q ( found← finab ex ) lemma14 : split (λ t1 → accept (automaton A) qa (h ∷ t1)) (contain B) t ≡ true lemma14 = lemma13 t (Nmoves NFA finab nq h) fn (δ (automaton A) qa h) (nmove (case1 qa) nq qat h) lemma11