Mercurial > hg > Members > kono > Proof > automaton1
changeset 15:2870097641f0
clean up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 16 Nov 2020 14:41:00 +0900 |
parents | 2e589115f7c9 |
children | d1f04098fc13 |
files | Test.agda finiteSet.agda regular-language.agda |
diffstat | 3 files changed, 0 insertions(+), 569 deletions(-) [+] |
line wrap: on
line diff
--- a/Test.agda Mon Nov 16 14:39:16 2020 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,32 +0,0 @@ -module Test where -open import Level -open import Relation.Nullary -open import Relation.Binary -- hiding (_⇔_ ) -open import Data.Empty -open import Data.Nat hiding ( _⊔_ ) - -id : ( A : Set ) → A → A -id A x = x - -id1 : { A : Set } → A → A -id1 x = x - - -test1 = id ℕ 1 -test2 = id1 1 - - - -data Bool : Set where - true : Bool - false : Bool - -record _∧_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where - constructor ⟪_,_⟫ - field - proj1 : A - proj2 : B - -data _∨_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where - case1 : A → A ∨ B - case2 : B → A ∨ B
--- a/finiteSet.agda Mon Nov 16 14:39:16 2020 +0900 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,536 +0,0 @@ -{-# OPTIONS --allow-unsolved-metas #-} -module finiteSet where - -open import Data.Nat hiding ( _≟_ ) -open import Data.Fin renaming ( _<_ to _<<_ ) hiding (_≤_) -open import Data.Fin.Properties hiding ( eq? ) -open import Data.Empty -open import Data.Bool renaming ( _∧_ to _/\_ ; _∨_ to _\/_ ) hiding ( _≟_ ; _<_ ; _≤_ ) -open import Relation.Nullary -open import Relation.Binary.Definitions -open import Relation.Binary.PropositionalEquality -open import logic -open import nat -open import Data.Nat.Properties as NatP hiding ( _≟_ ; eq? ) - -open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) - -record Found ( Q : Set ) (p : Q → Bool ) : Set where - field - found-q : Q - found-p : p found-q ≡ true - -lt0 : (n : ℕ) → n Data.Nat.≤ n -lt0 zero = z≤n -lt0 (suc n) = s≤s (lt0 n) -lt2 : {m n : ℕ} → m < n → m Data.Nat.≤ n -lt2 {zero} lt = z≤n -lt2 {suc m} {zero} () -lt2 {suc m} {suc n} (s≤s lt) = s≤s (lt2 lt) - -record FiniteSet ( Q : Set ) { n : ℕ } : Set where - field - Q←F : Fin n → Q - F←Q : Q → Fin n - finiso→ : (q : Q) → Q←F ( F←Q q ) ≡ q - finiso← : (f : Fin n ) → F←Q ( Q←F f ) ≡ f - finℕ : ℕ - finℕ = n - exists1 : (m : ℕ ) → m Data.Nat.≤ n → (Q → Bool) → Bool - exists1 zero _ _ = false - exists1 ( suc m ) m<n p = p (Q←F (fromℕ≤ {m} {n} m<n)) \/ exists1 m (lt2 m<n) p - exists : ( Q → Bool ) → Bool - exists p = exists1 n (lt0 n) p - - all1 : (m : ℕ ) → m Data.Nat.≤ n → (Q → Bool) → Bool - all1 zero _ _ = true - all1 ( suc m ) m<n p = p (Q←F (fromℕ≤ {m} {n} m<n)) /\ all1 m (lt2 m<n) p - all : ( Q → Bool ) → Bool - all p = all1 n (lt0 n) p - - open import Data.List - list1 : (m : ℕ ) → m Data.Nat.≤ n → (Q → Bool) → List Q - list1 zero _ _ = [] - list1 ( suc m ) m<n p with ? (p (Q←F (fromℕ≤ {m} {n} m<n))) true - ... | yes _ = Q←F (fromℕ≤ {m} {n} m<n) ∷ list1 m (lt2 m<n) p - ... | no _ = list1 m (lt2 m<n) p - to-list : ( Q → Bool ) → List Q - to-list p = list1 n (lt0 n) p - - equal? : Q → Q → Bool - equal? q0 q1 with F←Q q0 ≟ F←Q q1 - ... | yes p = true - ... | no ¬p = false - - equal→refl : { x y : Q } → equal? x y ≡ true → x ≡ y - equal→refl {q0} {q1} eq with F←Q q0 ≟ F←Q q1 - equal→refl {q0} {q1} refl | yes eq = begin - q0 - ≡⟨ sym ( finiso→ q0) ⟩ - Q←F (F←Q q0) - ≡⟨ cong (λ k → Q←F k ) eq ⟩ - Q←F (F←Q q1) - ≡⟨ finiso→ q1 ⟩ - q1 - ∎ where open ≡-Reasoning - equal→refl {q0} {q1} () | no ne - equal?-refl : {q : Q} → equal? q q ≡ true - equal?-refl {q} with F←Q q ≟ F←Q q - ... | yes p = refl - ... | no ne = ⊥-elim (ne refl) - - eq? : (x y : Q) → Dec ( x ≡ y ) - eq? x y with F←Q x ≟ F←Q y - eq? x y | yes p = yes ( begin - x - ≡⟨ sym ( finiso→ x ) ⟩ - Q←F (F←Q x) - ≡⟨ cong (λ k → Q←F k ) p ⟩ - Q←F (F←Q y) - ≡⟨ finiso→ y ⟩ - y - ∎ ) where open ≡-Reasoning - eq? x y | no ¬p = no ( λ eq → ¬p (cong (λ k → F←Q k ) eq )) - - fin<n : {n : ℕ} {f : Fin n} → toℕ f < n - fin<n {_} {zero} = s≤s z≤n - fin<n {suc n} {suc f} = s≤s (fin<n {n} {f}) - i=j : {n : ℕ} (i j : Fin n) → toℕ i ≡ toℕ j → i ≡ j - i=j {suc n} zero zero refl = refl - i=j {suc n} (suc i) (suc j) eq = cong ( λ k → suc k ) ( i=j i j (cong ( λ k → Data.Nat.pred k ) eq) ) - -- ¬∀⟶∃¬ : ∀ n {p} (P : Pred (Fin n) p) → Decidable P → ¬ (∀ i → P i) → (∃ λ i → ¬ P i) - End : (m : ℕ ) → (p : Q → Bool ) → Set - End m p = (i : Fin n) → m ≤ toℕ i → p (Q←F i ) ≡ false - next-end : {m : ℕ } → ( p : Q → Bool ) → End (suc m) p - → (m<n : m < n ) → p (Q←F (fromℕ≤ m<n )) ≡ false - → End m p - next-end {m} p prev m<n np i m<i with NatP.<-cmp m (toℕ i) - next-end p prev m<n np i m<i | tri< a ¬b ¬c = prev i a - next-end p prev m<n np i m<i | tri> ¬a ¬b c = ⊥-elim ( nat-≤> m<i c ) - next-end {m} p prev m<n np i m<i | tri≈ ¬a b ¬c = subst ( λ k → p (Q←F k) ≡ false) (m<n=i i b m<n ) np where - m<n=i : {n : ℕ } (i : Fin n) {m : ℕ } → m ≡ (toℕ i) → (m<n : m < n ) → fromℕ≤ m<n ≡ i - m<n=i i eq m<n = i=j (fromℕ≤ m<n) i (subst (λ k → k ≡ toℕ i) (sym (toℕ-fromℕ≤ m<n)) eq ) - first-end : ( p : Q → Bool ) → End n p - first-end p i i>n = ⊥-elim (nat-≤> i>n (fin<n {n} {i}) ) - found : { p : Q → Bool } → (q : Q ) → p q ≡ true → exists p ≡ true - found {p} q pt = found1 n (lt0 n) ( first-end p ) where - found1 : (m : ℕ ) (m<n : m Data.Nat.≤ n ) → ((i : Fin n) → m ≤ toℕ i → p (Q←F i ) ≡ false ) → exists1 m m<n p ≡ true - found1 0 m<n end = ⊥-elim ( ? (subst (λ k → k ≡ false ) (cong (λ k → p k) (finiso→ q) ) (end (F←Q q) z≤n )) pt ) - found1 (suc m) m<n end with ? (p (Q←F (fromℕ≤ m<n))) true - found1 (suc m) m<n end | yes eq = subst (λ k → k \/ exists1 m (lt2 m<n) p ≡ true ) (sym eq) (? {exists1 m (lt2 m<n) p} ) - found1 (suc m) m<n end | no np = begin - p (Q←F (fromℕ≤ m<n)) \/ exists1 m (lt2 m<n) p - ≡⟨ ? ? ⟩ - exists1 m (lt2 m<n) p - ≡⟨ found1 m (lt2 m<n) (next-end p end m<n (? np )) ⟩ - true - ∎ where open ≡-Reasoning - not-found : { p : Q → Bool } → ( (q : Q ) → p q ≡ false ) → exists p ≡ false - not-found {p} pn = not-found2 n (lt0 n) where - not-found2 : (m : ℕ ) → (m<n : m Data.Nat.≤ n ) → exists1 m m<n p ≡ false - not-found2 zero _ = refl - not-found2 ( suc m ) m<n with pn (Q←F (fromℕ≤ {m} {n} m<n)) - not-found2 (suc m) m<n | eq = begin - p (Q←F (fromℕ≤ m<n)) \/ exists1 m (lt2 m<n) p - ≡⟨ ? eq ⟩ - exists1 m (lt2 m<n) p - ≡⟨ not-found2 m (lt2 m<n) ⟩ - false - ∎ where open ≡-Reasoning - open import Level - postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n n -- (Level.suc n) - found← : { p : Q → Bool } → exists p ≡ true → Found Q p - found← {p} exst = found2 n (lt0 n) (first-end p ) where - found2 : (m : ℕ ) (m<n : m Data.Nat.≤ n ) → End m p → Found Q p - found2 0 m<n end = ⊥-elim ( ? (not-found (λ q → end (F←Q q) z≤n ) ) (subst (λ k → exists k ≡ true) (sym lemma) exst ) ) where - lemma : (λ z → p (Q←F (F←Q z))) ≡ p - lemma = f-extensionality ( λ q → subst (λ k → p k ≡ p q ) (sym (finiso→ q)) refl ) - found2 (suc m) m<n end with ? (p (Q←F (fromℕ≤ m<n))) true - found2 (suc m) m<n end | yes eq = record { found-q = Q←F (fromℕ≤ m<n) ; found-p = eq } - found2 (suc m) m<n end | no np = - found2 m (lt2 m<n) (next-end p end m<n (? np )) - not-found← : { p : Q → Bool } → exists p ≡ false → (q : Q ) → p q ≡ false - not-found← {p} np q = ? ( contra-position {_} {_} {_} {exists p ≡ true} (found q) (λ ep → ? np ep ) ) - -record ISO (A B : Set) : Set where - field - A←B : B → A - B←A : A → B - iso← : (q : A) → A←B ( B←A q ) ≡ q - iso→ : (f : B) → B←A ( A←B f ) ≡ f - -iso-fin : {A B : Set} → {n : ℕ } → FiniteSet A {n} → ISO A B → FiniteSet B {n} -iso-fin {A} {B} {n} fin iso = record { - Q←F = λ f → ISO.B←A iso ( FiniteSet.Q←F fin f ) - ; F←Q = λ b → FiniteSet.F←Q fin ( ISO.A←B iso b ) - ; finiso→ = finiso→ - ; finiso← = finiso← - } where - finiso→ : (q : B) → ISO.B←A iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (ISO.A←B iso q))) ≡ q - finiso→ q = begin - ISO.B←A iso (FiniteSet.Q←F fin (FiniteSet.F←Q fin (ISO.A←B iso q))) - ≡⟨ cong (λ k → ISO.B←A iso k ) (FiniteSet.finiso→ fin _ ) ⟩ - ISO.B←A iso (ISO.A←B iso q) - ≡⟨ ISO.iso→ iso _ ⟩ - q - ∎ where - open ≡-Reasoning - finiso← : (f : Fin n) → FiniteSet.F←Q fin (ISO.A←B iso (ISO.B←A iso (FiniteSet.Q←F fin f))) ≡ f - finiso← f = begin - FiniteSet.F←Q fin (ISO.A←B iso (ISO.B←A iso (FiniteSet.Q←F fin f))) - ≡⟨ cong (λ k → FiniteSet.F←Q fin k ) (ISO.iso← iso _) ⟩ - FiniteSet.F←Q fin (FiniteSet.Q←F fin f) - ≡⟨ FiniteSet.finiso← fin _ ⟩ - f - ∎ where - open ≡-Reasoning - -data One : Set where - one : One - -fin-∨1 : {B : Set} → { b : ℕ } → FiniteSet B {b} → FiniteSet (One ∨ B) {suc b} -fin-∨1 {B} {b} fb = record { - Q←F = Q←F - ; F←Q = F←Q - ; finiso→ = finiso→ - ; finiso← = finiso← - } where - Q←F : Fin (suc b) → One ∨ B - Q←F zero = case1 one - Q←F (suc f) = case2 (FiniteSet.Q←F fb f) - F←Q : One ∨ B → Fin (suc b) - F←Q (case1 one) = zero - F←Q (case2 f ) = suc (FiniteSet.F←Q fb f) - finiso→ : (q : One ∨ B) → Q←F (F←Q q) ≡ q - finiso→ (case1 one) = refl - finiso→ (case2 b) = cong (λ k → case2 k ) (FiniteSet.finiso→ fb b) - finiso← : (q : Fin (suc b)) → F←Q (Q←F q) ≡ q - finiso← zero = refl - finiso← (suc f) = cong ( λ k → suc k ) (FiniteSet.finiso← fb f) - - -fin-∨2 : {B : Set} → ( a : ℕ ) → { b : ℕ } → FiniteSet B {b} → FiniteSet (Fin a ∨ B) {a Data.Nat.+ b} -fin-∨2 {B} zero {b} fb = iso-fin fb iso where - iso : ISO B (Fin zero ∨ B) - iso = record { - A←B = A←B - ; B←A = λ b → case2 b - ; iso→ = iso→ - ; iso← = λ _ → refl - } where - A←B : Fin zero ∨ B → B - A←B (case2 x) = x - iso→ : (f : Fin zero ∨ B ) → case2 (A←B f) ≡ f - iso→ (case2 x) = refl -fin-∨2 {B} (suc a) {b} fb = iso-fin (fin-∨1 (fin-∨2 a fb) ) iso - where - iso : ISO (One ∨ (Fin a ∨ B) ) (Fin (suc a) ∨ B) - ISO.A←B iso (case1 zero) = case1 one - ISO.A←B iso (case1 (suc f)) = case2 (case1 f) - ISO.A←B iso (case2 b) = case2 (case2 b) - ISO.B←A iso (case1 one) = case1 zero - ISO.B←A iso (case2 (case1 f)) = case1 (suc f) - ISO.B←A iso (case2 (case2 b)) = case2 b - ISO.iso← iso (case1 one) = refl - ISO.iso← iso (case2 (case1 x)) = refl - ISO.iso← iso (case2 (case2 x)) = refl - ISO.iso→ iso (case1 zero) = refl - ISO.iso→ iso (case1 (suc x)) = refl - ISO.iso→ iso (case2 x) = refl - - -FiniteSet→Fin : {A : Set} → { a : ℕ } → (fin : FiniteSet A {a} ) → ISO (Fin a) A -ISO.A←B (FiniteSet→Fin fin) f = FiniteSet.F←Q fin f -ISO.B←A (FiniteSet→Fin fin) f = FiniteSet.Q←F fin f -ISO.iso← (FiniteSet→Fin fin) = FiniteSet.finiso← fin -ISO.iso→ (FiniteSet→Fin fin) = FiniteSet.finiso→ fin - - -fin-∨ : {A B : Set} → { a b : ℕ } → FiniteSet A {a} → FiniteSet B {b} → FiniteSet (A ∨ B) {a Data.Nat.+ b} -fin-∨ {A} {B} {a} {b} fa fb = iso-fin (fin-∨2 a fb ) iso2 where - ia = FiniteSet→Fin fa - iso2 : ISO (Fin a ∨ B ) (A ∨ B) - ISO.A←B iso2 (case1 x) = case1 ( ISO.A←B ia x ) - ISO.A←B iso2 (case2 x) = case2 x - ISO.B←A iso2 (case1 x) = case1 ( ISO.B←A ia x ) - ISO.B←A iso2 (case2 x) = case2 x - ISO.iso← iso2 (case1 x) = cong ( λ k → case1 k ) (ISO.iso← ia x) - ISO.iso← iso2 (case2 x) = refl - ISO.iso→ iso2 (case1 x) = cong ( λ k → case1 k ) (ISO.iso→ ia x) - ISO.iso→ iso2 (case2 x) = refl - -open import Data.Product - -fin-× : {A B : Set} → { a b : ℕ } → FiniteSet A {a} → FiniteSet B {b} → FiniteSet (A × B) {a * b} -fin-× {A} {B} {a} {b} fa fb with FiniteSet→Fin fa -... | a=f = iso-fin (fin-×-f a ) iso-1 where - iso-1 : ISO (Fin a × B) ( A × B ) - ISO.A←B iso-1 x = ( FiniteSet.F←Q fa (proj₁ x) , proj₂ x) - ISO.B←A iso-1 x = ( FiniteSet.Q←F fa (proj₁ x) , proj₂ x) - ISO.iso← iso-1 x = lemma where - lemma : (FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj₁ x)) , proj₂ x) ≡ ( proj₁ x , proj₂ x ) - lemma = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso← fa _ ) - ISO.iso→ iso-1 x = cong ( λ k → ( k , proj₂ x ) ) (FiniteSet.finiso→ fa _ ) - - iso-2 : {a : ℕ } → ISO (B ∨ (Fin a × B)) (Fin (suc a) × B) - ISO.A←B iso-2 (zero , b ) = case1 b - ISO.A←B iso-2 (suc fst , b ) = case2 ( fst , b ) - ISO.B←A iso-2 (case1 b) = ( zero , b ) - ISO.B←A iso-2 (case2 (a , b )) = ( suc a , b ) - ISO.iso← iso-2 (case1 x) = refl - ISO.iso← iso-2 (case2 x) = refl - ISO.iso→ iso-2 (zero , b ) = refl - ISO.iso→ iso-2 (suc a , b ) = refl - - fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) × B) {a * b} - fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () } - fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2 - -open _∧_ - -fin-∧ : {A B : Set} → { a b : ℕ } → FiniteSet A {a} → FiniteSet B {b} → FiniteSet (A ∧ B) {a * b} -fin-∧ {A} {B} {a} {b} fa fb with FiniteSet→Fin fa -- same thing for our tool -... | a=f = iso-fin (fin-×-f a ) iso-1 where - iso-1 : ISO (Fin a ∧ B) ( A ∧ B ) - ISO.A←B iso-1 x = record { proj1 = FiniteSet.F←Q fa (proj1 x) ; proj2 = proj2 x} - ISO.B←A iso-1 x = record { proj1 = FiniteSet.Q←F fa (proj1 x) ; proj2 = proj2 x} - ISO.iso← iso-1 x = lemma where - lemma : record { proj1 = FiniteSet.F←Q fa (FiniteSet.Q←F fa (proj1 x)) ; proj2 = proj2 x} ≡ record {proj1 = proj1 x ; proj2 = proj2 x } - lemma = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso← fa _ ) - ISO.iso→ iso-1 x = cong ( λ k → record {proj1 = k ; proj2 = proj2 x } ) (FiniteSet.finiso→ fa _ ) - - iso-2 : {a : ℕ } → ISO (B ∨ (Fin a ∧ B)) (Fin (suc a) ∧ B) - ISO.A←B iso-2 (record { proj1 = zero ; proj2 = b }) = case1 b - ISO.A←B iso-2 (record { proj1 = suc fst ; proj2 = b }) = case2 ( record { proj1 = fst ; proj2 = b } ) - ISO.B←A iso-2 (case1 b) = record {proj1 = zero ; proj2 = b } - ISO.B←A iso-2 (case2 (record { proj1 = a ; proj2 = b })) = record { proj1 = suc a ; proj2 = b } - ISO.iso← iso-2 (case1 x) = refl - ISO.iso← iso-2 (case2 x) = refl - ISO.iso→ iso-2 (record { proj1 = zero ; proj2 = b }) = refl - ISO.iso→ iso-2 (record { proj1 = suc a ; proj2 = b }) = refl - - fin-×-f : ( a : ℕ ) → FiniteSet ((Fin a) ∧ B) {a * b} - fin-×-f zero = record { Q←F = λ () ; F←Q = λ () ; finiso→ = λ () ; finiso← = λ () } - fin-×-f (suc a) = iso-fin ( fin-∨ fb ( fin-×-f a ) ) iso-2 - -import Data.Nat.DivMod - -open import Data.Vec -import Data.Product - -exp2 : (n : ℕ ) → exp 2 (suc n) ≡ exp 2 n Data.Nat.+ exp 2 n -exp2 n = begin - exp 2 (suc n) - ≡⟨⟩ - 2 * ( exp 2 n ) - ≡⟨ *-comm 2 (exp 2 n) ⟩ - ( exp 2 n ) * 2 - ≡⟨ +-*-suc ( exp 2 n ) 1 ⟩ - (exp 2 n ) Data.Nat.+ ( exp 2 n ) * 1 - ≡⟨ cong ( λ k → (exp 2 n ) Data.Nat.+ k ) (proj₂ *-identity (exp 2 n) ) ⟩ - exp 2 n Data.Nat.+ exp 2 n - ∎ where - open ≡-Reasoning - open Data.Product - -cast-iso : {n m : ℕ } → (eq : n ≡ m ) → (f : Fin m ) → cast eq ( cast (sym eq ) f) ≡ f -cast-iso refl zero = refl -cast-iso refl (suc f) = cong ( λ k → suc k ) ( cast-iso refl f ) - - -fin2List : {n : ℕ } → FiniteSet (Vec Bool n) {exp 2 n } -fin2List {zero} = record { - Q←F = λ _ → Vec.[] - ; F←Q = λ _ → # 0 - ; finiso→ = finiso→ - ; finiso← = finiso← - } where - Q = Vec Bool zero - finiso→ : (q : Q) → [] ≡ q - finiso→ [] = refl - finiso← : (f : Fin (exp 2 zero)) → # 0 ≡ f - finiso← zero = refl -fin2List {suc n} = subst (λ k → FiniteSet (Vec Bool (suc n)) {k} ) (sym (exp2 n)) ( iso-fin (fin-∨ (fin2List {n}) (fin2List {n})) iso ) - where - QtoR : Vec Bool (suc n) → Vec Bool n ∨ Vec Bool n - QtoR ( true ∷ x ) = case1 x - QtoR ( false ∷ x ) = case2 x - RtoQ : Vec Bool n ∨ Vec Bool n → Vec Bool (suc n) - RtoQ ( case1 x ) = true ∷ x - RtoQ ( case2 x ) = false ∷ x - isoRQ : (x : Vec Bool (suc n) ) → RtoQ ( QtoR x ) ≡ x - isoRQ (true ∷ _ ) = refl - isoRQ (false ∷ _ ) = refl - isoQR : (x : Vec Bool n ∨ Vec Bool n ) → QtoR ( RtoQ x ) ≡ x - isoQR (case1 x) = refl - isoQR (case2 x) = refl - iso : ISO (Vec Bool n ∨ Vec Bool n) (Vec Bool (suc n)) - iso = record { A←B = QtoR ; B←A = RtoQ ; iso← = isoQR ; iso→ = isoRQ } - -F2L : {Q : Set } {n m : ℕ } → n < suc m → (fin : FiniteSet Q {m} ) → ( (q : Q) → toℕ (FiniteSet.F←Q fin q ) < n → Bool ) → Vec Bool n -F2L {Q} {zero} fin _ Q→B = [] -F2L {Q} {suc n} (s≤s n<m) fin Q→B = Q→B (FiniteSet.Q←F fin (fromℕ≤ n<m)) lemma6 ∷ F2L {Q} {n} (NatP.<-trans n<m a<sa ) fin qb1 where - lemma6 : toℕ (FiniteSet.F←Q fin (FiniteSet.Q←F fin (fromℕ≤ n<m))) < suc n - lemma6 = subst (λ k → toℕ k < suc n ) (sym (FiniteSet.finiso← fin _ )) (subst (λ k → k < suc n) (sym (toℕ-fromℕ≤ n<m )) a<sa ) - qb1 : (q : Q) → toℕ (FiniteSet.F←Q fin q) < n → Bool - qb1 q q<n = Q→B q (NatP.<-trans q<n a<sa) - -List2Func : { Q : Set } → {n m : ℕ } → n < suc m → FiniteSet Q {m} → Vec Bool n → Q → Bool -List2Func {Q} {zero} (s≤s z≤n) fin [] q = false -List2Func {Q} {suc n} {m} (s≤s n<m) fin (h ∷ t) q with FiniteSet.F←Q fin q ≟ fromℕ≤ n<m -... | yes _ = h -... | no _ = List2Func {Q} {n} {m} (NatP.<-trans n<m a<sa ) fin t q - -F2L-iso : { Q : Set } → {n : ℕ } → (fin : FiniteSet Q {n}) → (x : Vec Bool n ) → F2L a<sa fin (λ q _ → List2Func a<sa fin x q ) ≡ x -F2L-iso {Q} {m} fin x = f2l m a<sa x where - f2l : (n : ℕ ) → (n<m : n < suc m )→ (x : Vec Bool n ) → F2L n<m fin (λ q q<n → List2Func n<m fin x q ) ≡ x - f2l zero (s≤s z≤n) [] = refl - f2l (suc n) (s≤s n<m) (h ∷ t ) = lemma1 lemma2 lemma3 where - lemma1 : {n : ℕ } → {h h1 : Bool } → {t t1 : Vec Bool n } → h ≡ h1 → t ≡ t1 → h ∷ t ≡ h1 ∷ t1 - lemma1 refl refl = refl - lemma2 : List2Func (s≤s n<m) fin (h ∷ t) (FiniteSet.Q←F fin (fromℕ≤ n<m)) ≡ h - lemma2 with FiniteSet.F←Q fin (FiniteSet.Q←F fin (fromℕ≤ n<m)) ≟ fromℕ≤ n<m - lemma2 | yes p = refl - lemma2 | no ¬p = ⊥-elim ( ¬p (FiniteSet.finiso← fin _) ) - lemma4 : (q : Q ) → toℕ (FiniteSet.F←Q fin q ) < n → List2Func (s≤s n<m) fin (h ∷ t) q ≡ List2Func (NatP.<-trans n<m a<sa) fin t q - lemma4 q _ with FiniteSet.F←Q fin q ≟ fromℕ≤ n<m - lemma4 q lt | yes p = ⊥-elim ( nat-≡< (toℕ-fromℕ≤ n<m) (lemma5 n lt (cong (λ k → toℕ k) p))) where - lemma5 : {j k : ℕ } → ( n : ℕ) → suc j ≤ n → j ≡ k → k < n - lemma5 {zero} (suc n) (s≤s z≤n) refl = s≤s z≤n - lemma5 {suc j} (suc n) (s≤s lt) refl = s≤s (lemma5 {j} n lt refl) - lemma4 q _ | no ¬p = refl - lemma3 : F2L (NatP.<-trans n<m a<sa) fin (λ q q<n → List2Func (s≤s n<m) fin (h ∷ t) q ) ≡ t - lemma3 = begin - F2L (NatP.<-trans n<m a<sa) fin (λ q q<n → List2Func (s≤s n<m) fin (h ∷ t) q ) - ≡⟨ cong (λ k → F2L (NatP.<-trans n<m a<sa) fin ( λ q q<n → k q q<n )) - (FiniteSet.f-extensionality fin ( λ q → - (FiniteSet.f-extensionality fin ( λ q<n → lemma4 q q<n )))) ⟩ - F2L (NatP.<-trans n<m a<sa) fin (λ q q<n → List2Func (NatP.<-trans n<m a<sa) fin t q ) - ≡⟨ f2l n (NatP.<-trans n<m a<sa ) t ⟩ - t - ∎ where - open ≡-Reasoning - - -L2F : {Q : Set } {n m : ℕ } → n < suc m → (fin : FiniteSet Q {m} ) → Vec Bool n → (q : Q ) → toℕ (FiniteSet.F←Q fin q ) < n → Bool -L2F n<m fin x q q<n = List2Func n<m fin x q - -L2F-iso : { Q : Set } → {n : ℕ } → (fin : FiniteSet Q {n}) → (f : Q → Bool ) → (q : Q ) → (L2F a<sa fin (F2L a<sa fin (λ q _ → f q) )) q (toℕ<n _) ≡ f q -L2F-iso {Q} {m} fin f q = l2f m a<sa (toℕ<n _) where - lemma11 : {n : ℕ } → (n<m : n < m ) → ¬ ( FiniteSet.F←Q fin q ≡ fromℕ≤ n<m ) → toℕ (FiniteSet.F←Q fin q) ≤ n → toℕ (FiniteSet.F←Q fin q) < n - lemma11 {n} n<m ¬q=n q≤n = lemma13 n<m (contra-position (lemma12 n<m _) ¬q=n ) q≤n where - lemma13 : {n nq : ℕ } → (n<m : n < m ) → ¬ ( nq ≡ n ) → nq ≤ n → nq < n - lemma13 {0} {0} (s≤s z≤n) nt z≤n = ⊥-elim ( nt refl ) - lemma13 {suc _} {0} (s≤s (s≤s n<m)) nt z≤n = s≤s z≤n - lemma13 {suc n} {suc nq} n<m nt (s≤s nq≤n) = s≤s (lemma13 {n} {nq} (NatP.<-trans a<sa n<m ) (λ eq → nt ( cong ( λ k → suc k ) eq )) nq≤n) - lemma3 : {a b : ℕ } → (lt : a < b ) → fromℕ≤ (s≤s lt) ≡ suc (fromℕ≤ lt) - lemma3 (s≤s lt) = refl - lemma12 : {n m : ℕ } → (n<m : n < m ) → (f : Fin m ) → toℕ f ≡ n → f ≡ fromℕ≤ n<m - lemma12 {zero} {suc m} (s≤s z≤n) zero refl = refl - lemma12 {suc n} {suc m} (s≤s n<m) (suc f) refl = subst ( λ k → suc f ≡ k ) (sym (lemma3 n<m) ) ( cong ( λ k → suc k ) ( lemma12 {n} {m} n<m f refl ) ) - l2f : (n : ℕ ) → (n<m : n < suc m ) → (q<n : toℕ (FiniteSet.F←Q fin q ) < n ) → (L2F n<m fin (F2L n<m fin (λ q _ → f q))) q q<n ≡ f q - l2f zero (s≤s z≤n) () - l2f (suc n) (s≤s n<m) (s≤s n<q) with FiniteSet.F←Q fin q ≟ fromℕ≤ n<m - l2f (suc n) (s≤s n<m) (s≤s n<q) | yes p = begin - f (FiniteSet.Q←F fin (fromℕ≤ n<m)) - ≡⟨ cong ( λ k → f (FiniteSet.Q←F fin k )) (sym p) ⟩ - f (FiniteSet.Q←F fin ( FiniteSet.F←Q fin q )) - ≡⟨ cong ( λ k → f k ) (FiniteSet.finiso→ fin _ ) ⟩ - f q - ∎ where - open ≡-Reasoning - l2f (suc n) (s≤s n<m) (s≤s n<q) | no ¬p = l2f n (NatP.<-trans n<m a<sa) (lemma11 n<m ¬p n<q) - -fin→ : {A : Set} → { a : ℕ } → FiniteSet A {a} → FiniteSet (A → Bool ) {exp 2 a} -fin→ {A} {a} fin = iso-fin fin2List iso where - iso : ISO (Vec Bool a ) (A → Bool) - ISO.A←B iso x = F2L a<sa fin ( λ q _ → x q ) - ISO.B←A iso x = List2Func a<sa fin x - ISO.iso← iso x = F2L-iso fin x - ISO.iso→ iso x = lemma where - lemma : List2Func a<sa fin (F2L a<sa fin (λ q _ → x q)) ≡ x - lemma = FiniteSet.f-extensionality fin ( λ q → L2F-iso fin x q ) - - -Fin2Finite : ( n : ℕ ) → FiniteSet (Fin n) {n} -Fin2Finite n = record { F←Q = λ x → x ; Q←F = λ x → x ; finiso← = λ q → refl ; finiso→ = λ q → refl } - -data fin-less { n m : ℕ } { A : Set } (n<m : n < m ) (fa : FiniteSet A {m}) : Set where - elm1 : (elm : A ) → toℕ (FiniteSet.F←Q fa elm ) < n → fin-less n<m fa - -get-elm : { n m : ℕ } {n<m : n < m } { A : Set } {fa : FiniteSet A {m}} → fin-less n<m fa → A -get-elm (elm1 a _ ) = a - -get-< : { n m : ℕ } {n<m : n < m } { A : Set } {fa : FiniteSet A {m}} → (f : fin-less n<m fa ) → toℕ (FiniteSet.F←Q fa (get-elm f )) < n -get-< (elm1 _ b ) = b - -fin-less-cong : { n m : ℕ } (n<m : n < m ) { A : Set } (fa : FiniteSet A {m}) - → (x y : fin-less n<m fa ) → get-elm {n} {m} {n<m} {A} {fa} x ≡ get-elm {n} {m} {n<m} {A} {fa} y → get-< x ≅ get-< y → x ≡ y -fin-less-cong n<m fa (elm1 elm x) (elm1 elm x) refl HE.refl = refl - -fin-< : {A : Set} → { n m : ℕ } → (n<m : n < m ) → (fa : FiniteSet A {m}) → FiniteSet (fin-less n<m fa) {n} -fin-< {A} {n} {m} n<m fa = iso-fin (Fin2Finite n) iso where - iso : ISO (Fin n) (fin-less n<m fa) - lemma8 : {i j n : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → i<n ≅ j<n - lemma8 {zero} {zero} {suc n} refl {s≤s z≤n} {s≤s z≤n} = HE.refl - lemma8 {suc i} {suc i} {suc n} refl {s≤s i<n} {s≤s j<n} = HE.cong (λ k → s≤s k ) ( lemma8 {i} {i} {n} refl ) - lemma10 : {n i j : ℕ } → ( i ≡ j ) → {i<n : i < n } → {j<n : j < n } → fromℕ≤ i<n ≡ fromℕ≤ j<n - lemma10 {n} refl = HE.≅-to-≡ (HE.cong (λ k → fromℕ≤ k ) (lemma8 refl )) - lemma3 : {a b c : ℕ } → { a<b : a < b } { b<c : b < c } { a<c : a < c } → NatP.<-trans a<b b<c ≡ a<c - lemma3 {a} {b} {c} {a<b} {b<c} {a<c} = HE.≅-to-≡ (lemma8 refl) - lemma11 : {n m : ℕ } {x : Fin n } → (n<m : n < m ) → toℕ (fromℕ≤ (NatP.<-trans (toℕ<n x) n<m)) ≡ toℕ x - lemma11 {n} {m} {x} n<m = begin - toℕ (fromℕ≤ (NatP.<-trans (toℕ<n x) n<m)) - ≡⟨ toℕ-fromℕ≤ _ ⟩ - toℕ x - ∎ where - open ≡-Reasoning - ISO.A←B iso (elm1 elm x) = fromℕ≤ x - ISO.B←A iso x = elm1 (FiniteSet.Q←F fa (fromℕ≤ (NatP.<-trans x<n n<m ))) to<n where - x<n : toℕ x < n - x<n = toℕ<n x - to<n : toℕ (FiniteSet.F←Q fa (FiniteSet.Q←F fa (fromℕ≤ (NatP.<-trans x<n n<m)))) < n - to<n = subst (λ k → toℕ k < n ) (sym (FiniteSet.finiso← fa _ )) (subst (λ k → k < n ) (sym ( toℕ-fromℕ≤ (NatP.<-trans x<n n<m) )) x<n ) - ISO.iso← iso x = lemma2 where - lemma2 : fromℕ≤ (subst (λ k → toℕ k < n) (sym - (FiniteSet.finiso← fa (fromℕ≤ (NatP.<-trans (toℕ<n x) n<m)))) (subst (λ k → k < n) - (sym (toℕ-fromℕ≤ (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x))) ≡ x - lemma2 = begin - fromℕ≤ (subst (λ k → toℕ k < n) (sym - (FiniteSet.finiso← fa (fromℕ≤ (NatP.<-trans (toℕ<n x) n<m)))) (subst (λ k → k < n) - (sym (toℕ-fromℕ≤ (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x))) - ≡⟨⟩ - fromℕ≤ ( subst (λ k → toℕ ( k ) < n ) (sym (FiniteSet.finiso← fa _ )) lemma6 ) - ≡⟨ lemma10 (cong (λ k → toℕ k) (FiniteSet.finiso← fa _ ) ) ⟩ - fromℕ≤ lemma6 - ≡⟨ lemma10 (lemma11 n<m ) ⟩ - fromℕ≤ ( toℕ<n x ) - ≡⟨ fromℕ≤-toℕ _ _ ⟩ - x - ∎ where - open ≡-Reasoning - lemma6 : toℕ (fromℕ≤ (NatP.<-trans (toℕ<n x) n<m)) < n - lemma6 = subst ( λ k → k < n ) (sym (toℕ-fromℕ≤ (NatP.<-trans (toℕ<n x) n<m))) (toℕ<n x ) - ISO.iso→ iso (elm1 elm x) = fin-less-cong n<m fa _ _ lemma (lemma8 (cong (λ k → toℕ (FiniteSet.F←Q fa k) ) lemma ) ) where - lemma13 : toℕ (fromℕ≤ x) ≡ toℕ (FiniteSet.F←Q fa elm) - lemma13 = begin - toℕ (fromℕ≤ x) - ≡⟨ toℕ-fromℕ≤ _ ⟩ - toℕ (FiniteSet.F←Q fa elm) - ∎ where open ≡-Reasoning - lemma : FiniteSet.Q←F fa (fromℕ≤ (NatP.<-trans (toℕ<n (ISO.A←B iso (elm1 elm x))) n<m)) ≡ elm - lemma = begin - FiniteSet.Q←F fa (fromℕ≤ (NatP.<-trans (toℕ<n (ISO.A←B iso (elm1 elm x))) n<m)) - ≡⟨⟩ - FiniteSet.Q←F fa (fromℕ≤ ( NatP.<-trans (toℕ<n ( fromℕ≤ x ) ) n<m)) - ≡⟨ cong (λ k → FiniteSet.Q←F fa k) (lemma10 lemma13 ) ⟩ - FiniteSet.Q←F fa (fromℕ≤ ( NatP.<-trans x n<m)) - ≡⟨ cong (λ k → FiniteSet.Q←F fa (fromℕ≤ k )) lemma3 ⟩ - FiniteSet.Q←F fa (fromℕ≤ ( toℕ<n (FiniteSet.F←Q fa elm))) - ≡⟨ cong (λ k → FiniteSet.Q←F fa k ) ( fromℕ≤-toℕ _ _ ) ⟩ - FiniteSet.Q←F fa (FiniteSet.F←Q fa elm ) - ≡⟨ FiniteSet.finiso→ fa _ ⟩ - elm - ∎ where open ≡-Reasoning - -
--- a/regular-language.agda Mon Nov 16 14:39:16 2020 +0900 +++ b/regular-language.agda Mon Nov 16 14:41:00 2020 +0900 @@ -14,7 +14,6 @@ open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Relation.Binary.Definitions open import logic -open import nat open import automaton -- open import finiteSet