Mercurial > hg > Members > kono > Proof > automaton1
changeset 14:2e589115f7c9
RexResult
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 16 Nov 2020 14:39:16 +0900 |
parents | 6f1fb2fa9a31 |
children | 2870097641f0 |
files | regex.agda |
diffstat | 1 files changed, 69 insertions(+), 48 deletions(-) [+] |
line wrap: on
line diff
--- a/regex.agda Mon Nov 16 13:54:31 2020 +0900 +++ b/regex.agda Mon Nov 16 14:39:16 2020 +0900 @@ -50,63 +50,64 @@ open import regular-language --- match : {Σ : Set} → (r : Regex Σ ) → Automaton (Regex Σ) Σ - -- open import Data.Nat.DivMod -- test-regex-even : Set -- test-regex-even = (s : List char ) → regular-expr ( ( any & any ) * ) s → (length s) mod 2 ≡ zero -empty? : {Σ : Set} → Regex Σ → Maybe (Regex Σ) -empty? (r *) = just (r *) +empty? : {Σ : Set} → Regex Σ → Bool +empty? (r *) = true empty? (r & s) with empty? r -... | nothing = nothing -... | just _ = empty? s +... | false = false +... | true = empty? s empty? (r || s) with empty? r | empty? s -... | nothing | nothing = nothing -... | just r1 | _ = just r1 -... | _ | just s1 = just s1 -empty? < x > = nothing +... | false | false = false +... | true | _ = true +... | _ | true = true +empty? < x > = false -derivative : {Σ : Set} → Regex Σ → Σ → ((i j : Σ ) → Dec ( i ≡ j )) → Maybe (Maybe (Regex Σ)) +data RexResult {Σ : Set} : Set where + fail : RexResult + finish : RexResult + continue : (Regex Σ) → RexResult + +derivative : {Σ : Set} → Regex Σ → Σ → ((i j : Σ ) → Dec ( i ≡ j )) → RexResult derivative (r *) x dec with derivative r x dec -... | just (just r1) = just (just (r1 & (r *))) -... | just nothing = just (just (r *)) -... | nothing = nothing +... | continue r1 = continue (r1 & (r *)) +... | finish = continue (r *) +... | fail = fail derivative (r & s) x dec with derivative r x dec | derivative s x dec | empty? r -... | nothing | _ | _ = nothing -... | just nothing | nothing | _ = just (just s) -... | just nothing | just nothing | _ = just (just s) -... | just nothing | just (just s1) | nothing = just (just s) -... | just nothing | just (just s1) | just _ = just (just (s1 || s)) -... | just (just r1) | _ | nothing = just (just (r1 & s)) -... | just (just r1) | just (just s1) | just _ = just (just (s1 || (r1 & s))) -... | just (just r1) | _ | just _ = just (just (r1 & s)) +... | fail | _ | _ = fail +... | finish | continue s1 | true = continue (s1 || s) +... | finish | _ | _ = continue s +... | continue r1 | continue s1 | true = continue (s1 || (r1 & s)) +... | continue r1 | _ | _ = continue (r1 & s) derivative (r || s) x dec with derivative r x dec | derivative s x dec -... | just (just r1) | just (just s1) = just (just ( r1 || s1 ) ) -... | just nothing | _ = just nothing -... | _ | just nothing = just nothing -... | just (just r1) | _ = just (just r1) -... | _ | just (just s1) = just (just s1) -... | nothing | nothing = nothing +... | continue r1 | continue s1 = continue ( r1 || s1 ) +... | fail | p = p +... | p | fail = p +... | finish | _ = finish +... | _ | finish = finish derivative < i > x dec with dec i x -... | yes y = just nothing -... | no _ = nothing +... | yes y = finish +... | no _ = fail open import automaton -regex→automaton : {Σ : Set} → Regex Σ → ((i j : Σ ) → Dec ( i ≡ j )) → Automaton (Maybe (Maybe (Regex Σ))) Σ +regex→automaton : {Σ : Set} → Regex Σ → ((i j : Σ ) → Dec ( i ≡ j )) → Automaton RexResult Σ regex→automaton {Σ} r dec = record { δ = δ ; F = F } where - δ : Maybe (Maybe (Regex Σ)) → Σ → Maybe (Maybe (Regex Σ)) - δ nothing i = nothing - δ (just nothing) i = nothing - δ (just (just r)) i = derivative r i dec - F : Maybe (Maybe (Regex Σ)) → Set - F (just (just (r *))) = ⊤ - F (just nothing) = ⊤ + δ : RexResult → Σ → RexResult + δ fail i = fail + δ finish i = fail + δ (continue r) i = derivative r i dec + F : RexResult → Set + F (continue r) with empty? r + ... | true = ⊤ + ... | false = ⊥ + F finish = ⊤ F _ = ⊥ char-dec : (i j : char) → Dec (i ≡ j) @@ -130,29 +131,49 @@ char-list : List char char-list = a ∷ b ∷ c ∷ d ∷ [] -a2 : accept (regex→automaton r2 char-dec ) (just (just r2)) ( a ∷ a ∷ b ∷ c ∷ [] ) +open Automaton + +a2 : accept (regex→automaton r2 char-dec ) (continue r2) ( a ∷ a ∷ b ∷ c ∷ [] ) a2 = tt -tr2 = trace (regex→automaton r2 char-dec ) (just (just r2)) ( a ∷ a ∷ b ∷ c ∷ [] ) a2 +tr2 = trace (regex→automaton r2 char-dec ) (continue r2) ( a ∷ a ∷ b ∷ c ∷ [] ) a2 -a1 : accept (regex→automaton < a > char-dec ) (just (just < a > )) ( a ∷ [] ) +a1 : accept (regex→automaton < a > char-dec ) (continue < a > ) ( a ∷ [] ) a1 = tt -tr1 = trace (regex→automaton < a > char-dec ) (just (just < a > )) ( a ∷ [] ) a1 +tr1 = trace (regex→automaton < a > char-dec ) (continue < a > ) ( a ∷ [] ) a1 -a3 = accept (regex→automaton < a > char-dec ) (just (just (< a > & < b > ))) ( a ∷ b ∷ [] ) -tr3 = trace (regex→automaton < a > char-dec ) (just (just (< a > & < b > ))) ( a ∷ b ∷ [] ) +a3 : accept (regex→automaton < a > char-dec ) (continue (< a > & < b > )) ( a ∷ b ∷ [] ) +a3 = tt +tr3 = trace (regex→automaton < a > char-dec ) (continue (< a > & < b > )) ( a ∷ b ∷ [] ) regex→accept : {Σ : Set} → (r : Regex Σ ) → (x : List Σ) → (dec : (i j : Σ ) → Dec ( i ≡ j )) - → accept (regex→automaton r dec) (just (just r)) x → regular-expr r x + → accept (regex→automaton r dec) (continue r) x → regular-expr r x regex→accept r x dec ac = {!!} regex←accept : {Σ : Set} → (r : Regex Σ ) → (x : List Σ) → (dec : (i j : Σ ) → Dec ( i ≡ j )) - → regular-expr r x → accept (regex→automaton r dec) (just (just r)) x + → regular-expr r x → accept (regex→automaton r dec) (continue r) x regex←accept r x dec re = {!!} +-- charRE-dec : (x y : Regex char) → Dec (x ≡ y) +-- charRE-dec (x *) (y *) with charRE-dec x y +-- ... | yes refl = yes refl +-- ... | no n = no {!!} +-- charRE-dec (x *) (_ & _) = no (λ ()) +-- charRE-dec (x *) (_ || _) = no (λ ()) +-- charRE-dec (x *) < _ > = no (λ ()) +-- charRE-dec (x & x1) (y & y1) with charRE-dec x y | charRE-dec x1 y1 +-- ... | yes refl | yes refl = yes refl +-- ... | no n | _ = no {!!} +-- ... | _ | no n = no {!!} +-- charRE-dec (x & x1) (y *) = no (λ ()) +-- charRE-dec (x & x1) (_ || _) = no (λ ()) +-- charRE-dec (x & x1) < _ > = no (λ ()) +-- charRE-dec (x || x₁) y = {!!} +-- charRE-dec < x > y = {!!} + + + - -