annotate HomReasoning.agda @ 445:00cf84846d81

cont..
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 14 Oct 2016 19:44:59 +0900
parents 3e44951b9bdb
children 55a9b6177ed4
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
56
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
1 module HomReasoning where
31
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp>
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import Category -- https://github.com/konn/category-agda
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import Level
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 open Functor
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 -- F(f)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 -- F(a) ---→ F(b)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 -- | |
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13 -- |t(a) |t(b) G(f)t(a) = t(b)F(f)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 -- | |
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 -- v v
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 -- G(a) ---→ G(b)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 -- G(f)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19 record IsNTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (D : Category c₁ c₂ ℓ) (C : Category c₁′ c₂′ ℓ′)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 ( F G : Functor D C )
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 (TMap : (A : Obj D) → Hom C (FObj F A) (FObj G A))
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23 field
130
5f331dfc000b remove Kleisli record
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
24 commute : {a b : Obj D} {f : Hom D a b}
31
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 → C [ C [ ( FMap G f ) o ( TMap a ) ] ≈ C [ (TMap b ) o (FMap F f) ] ]
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26
130
5f331dfc000b remove Kleisli record
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
27 record NTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′)
5f331dfc000b remove Kleisli record
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
28 (F G : Functor domain codomain )
31
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30 field
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
31 TMap : (A : Obj domain) → Hom codomain (FObj F A) (FObj G A)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32 isNTrans : IsNTrans domain codomain F G TMap
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
33
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
35 module ≈-Reasoning {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) where
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
36 open import Relation.Binary.Core
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
37
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
38 _o_ : {a b c : Obj A } ( x : Hom A a b ) ( y : Hom A c a ) → Hom A c b
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39 x o y = A [ x o y ]
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
40
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
41 _≈_ : {a b : Obj A } → Rel (Hom A a b) ℓ
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
42 x ≈ y = A [ x ≈ y ]
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
43
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
44 infixr 9 _o_
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45 infix 4 _≈_
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
46
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
47 refl-hom : {a b : Obj A } { x : Hom A a b } → x ≈ x
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
48 refl-hom = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory A ))
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
49
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
50 trans-hom : {a b : Obj A } { x y z : Hom A a b } →
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
51 x ≈ y → y ≈ z → x ≈ z
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
52 trans-hom b c = ( IsEquivalence.trans (IsCategory.isEquivalence ( Category.isCategory A ))) b c
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
53
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
54 -- some short cuts
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
55
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
56 car : {a b c : Obj A } {x y : Hom A a b } { f : Hom A c a } →
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
57 x ≈ y → ( x o f ) ≈ ( y o f )
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
58 car {f} eq = ( IsCategory.o-resp-≈ ( Category.isCategory A )) ( refl-hom ) eq
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
59
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
60 cdr : {a b c : Obj A } {x y : Hom A a b } { f : Hom A b c } →
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
61 x ≈ y → f o x ≈ f o y
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
62 cdr {f} eq = ( IsCategory.o-resp-≈ ( Category.isCategory A )) eq (refl-hom )
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
63
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
64 id : (a : Obj A ) → Hom A a a
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
65 id a = (Id {_} {_} {_} {A} a)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
66
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
67 idL : {a b : Obj A } { f : Hom A b a } → id a o f ≈ f
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
68 idL = IsCategory.identityL (Category.isCategory A)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
69
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
70 idR : {a b : Obj A } { f : Hom A a b } → f o id a ≈ f
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
71 idR = IsCategory.identityR (Category.isCategory A)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
72
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
73 sym : {a b : Obj A } { f g : Hom A a b } → f ≈ g → g ≈ f
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
74 sym = IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory A))
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
75
299
8c72f5284bc8 remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
76 -- working on another cateogry
8c72f5284bc8 remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
77 idL1 : { c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A b a } → A [ A [ Id {_} {_} {_} {A} a o f ] ≈ f ]
8c72f5284bc8 remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
78 idL1 A = IsCategory.identityL (Category.isCategory A)
8c72f5284bc8 remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
79
8c72f5284bc8 remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
80 idR1 : { c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b } → A [ A [ f o Id {_} {_} {_} {A} a ] ≈ f ]
8c72f5284bc8 remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
81 idR1 A = IsCategory.identityR (Category.isCategory A)
8c72f5284bc8 remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
82
67
e75436075bf0 cong-hom ?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
83 -- How to prove this?
75
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
84 ≡-≈ : {a b : Obj A } { x y : Hom A a b } → (x≈y : x ≡ y ) → x ≈ y
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
85 ≡-≈ refl = refl-hom
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
86
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
87 -- ≈-≡ : {a b : Obj A } { x y : Hom A a b } → (x≈y : x ≈ y ) → x ≡ y
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
88 -- ≈-≡ x≈y = irr x≈y
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
89 ≡-cong : { c₁′ c₂′ ℓ′ : Level} {B : Category c₁′ c₂′ ℓ′} {x y : Obj B } { a b : Hom B x y } {x' y' : Obj A } →
420
3e44951b9bdb refl in free-monoid trouble
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 299
diff changeset
90 (f : Hom B x y → Hom A x' y' ) → a ≡ b → f a ≈ f b
3e44951b9bdb refl in free-monoid trouble
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 299
diff changeset
91 ≡-cong f refl = ≡-≈ refl
75
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
92
67
e75436075bf0 cong-hom ?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
93 -- cong-≈ : { c₁′ c₂′ ℓ′ : Level} {B : Category c₁′ c₂′ ℓ′} {x y : Obj B } { a b : Hom B x y } {x' y' : Obj A } →
e75436075bf0 cong-hom ?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
94 -- B [ a ≈ b ] → (f : Hom B x y → Hom A x' y' ) → f a ≈ f b
75
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
95 -- cong-≈ eq f = {!!}
67
e75436075bf0 cong-hom ?
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 66
diff changeset
96
69
84a150c980ce generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 67
diff changeset
97 assoc : {a b c d : Obj A } {f : Hom A c d} {g : Hom A b c} {h : Hom A a b}
299
8c72f5284bc8 remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
98 → f o ( g o h ) ≈ ( f o g ) o h
31
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
99 assoc = IsCategory.associative (Category.isCategory A)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
100
299
8c72f5284bc8 remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
101 -- working on another cateogry
8c72f5284bc8 remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
102 assoc1 : { c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b c d : Obj A } {f : Hom A c d} {g : Hom A b c} {h : Hom A a b}
69
84a150c980ce generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 67
diff changeset
103 → A [ A [ f o ( A [ g o h ] ) ] ≈ A [ ( A [ f o g ] ) o h ] ]
299
8c72f5284bc8 remove module parameter from yoneda functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 253
diff changeset
104 assoc1 A = IsCategory.associative (Category.isCategory A)
69
84a150c980ce generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 67
diff changeset
105
84a150c980ce generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 67
diff changeset
106 distr : { c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
84a150c980ce generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 67
diff changeset
107 { c₁′ c₂′ ℓ′ : Level} {D : Category c₁′ c₂′ ℓ′} (T : Functor D A) → {a b c : Obj D} {g : Hom D b c} { f : Hom D a b }
84a150c980ce generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 67
diff changeset
108 → A [ FMap T ( D [ g o f ] ) ≈ A [ FMap T g o FMap T f ] ]
75
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
109 distr T = IsFunctor.distr ( isFunctor T )
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
110
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
111 resp : {a b c : Obj A} {f g : Hom A a b} {h i : Hom A b c} → f ≈ g → h ≈ i → (h o f) ≈ (i o g)
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
112 resp = IsCategory.o-resp-≈ (Category.isCategory A)
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
113
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
114 fcong : { c₁ c₂ ℓ : Level} {C : Category c₁ c₂ ℓ}
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
115 { c₁′ c₂′ ℓ′ : Level} {D : Category c₁′ c₂′ ℓ′} {a b : Obj C} {f g : Hom C a b} → (T : Functor C D) → C [ f ≈ g ] → D [ FMap T f ≈ FMap T g ]
8e665152c306 Comparison Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 69
diff changeset
116 fcong T = IsFunctor.≈-cong (isFunctor T)
31
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
117
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
118 open NTrans
69
84a150c980ce generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 67
diff changeset
119 nat : { c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { c₁′ c₂′ ℓ′ : Level} {D : Category c₁′ c₂′ ℓ′}
84a150c980ce generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 67
diff changeset
120 {a b : Obj D} {f : Hom D a b} {F G : Functor D A }
31
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
121 → (η : NTrans D A F G )
69
84a150c980ce generalized distr and assco1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 67
diff changeset
122 → A [ A [ FMap G f o TMap η a ] ≈ A [ TMap η b o FMap F f ] ]
130
5f331dfc000b remove Kleisli record
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 75
diff changeset
123 nat η = IsNTrans.commute ( isNTrans η )
31
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
124
152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 146
diff changeset
125 infixr 2 _∎
31
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
126 infixr 2 _≈⟨_⟩_ _≈⟨⟩_
168
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
127 infixr 2 _≈↑⟨_⟩_
31
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
128 infix 1 begin_
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
129
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
130 ------ If we have this, for example, as an axiom of a category, we can use ≡-Reasoning directly
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
131 -- ≈-to-≡ : {a b : Obj A } { x y : Hom A a b } → A [ x ≈ y ] → x ≡ y
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
132 -- ≈-to-≡ refl-hom = refl
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
133
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
134 data _IsRelatedTo_ { a b : Obj A } ( x y : Hom A a b ) :
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
135 Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
136 relTo : (x≈y : x ≈ y ) → x IsRelatedTo y
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
137
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
138 begin_ : { a b : Obj A } { x y : Hom A a b } →
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
139 x IsRelatedTo y → x ≈ y
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
140 begin relTo x≈y = x≈y
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
141
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
142 _≈⟨_⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y z : Hom A a b } →
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
143 x ≈ y → y IsRelatedTo z → x IsRelatedTo z
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
144 _ ≈⟨ x≈y ⟩ relTo y≈z = relTo (trans-hom x≈y y≈z)
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
145
168
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
146 _≈↑⟨_⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y z : Hom A a b } →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
147 y ≈ x → y IsRelatedTo z → x IsRelatedTo z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
148 _ ≈↑⟨ y≈x ⟩ relTo y≈z = relTo (trans-hom ( sym y≈x ) y≈z)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 152
diff changeset
149
31
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
150 _≈⟨⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y : Hom A a b } → x IsRelatedTo y → x IsRelatedTo y
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
151 _ ≈⟨⟩ x∼y = x∼y
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
152
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
153 _∎ : { a b : Obj A } ( x : Hom A a b ) → x IsRelatedTo x
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
154 _∎ _ = relTo refl-hom
17b8bafebad7 add universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
155
56
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
156 -- an example
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
157
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
158 Lemma61 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) →
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
159 { a : Obj A } ( b : Obj A ) →
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
160 ( f : Hom A a b )
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
161 → A [ A [ (Id {_} {_} {_} {A} b) o f ] ≈ f ]
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
162 Lemma61 c b g = -- IsCategory.identityL (Category.isCategory c)
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
163 let open ≈-Reasoning (c) in
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
164 begin
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
165 c [ Id {_} {_} {_} {c} b o g ]
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
166 ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
167 g
83ff8d48fdca add unitility
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 31
diff changeset
168
253
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
169
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
170 Lemma62 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
171 { a b : Obj A } →
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
172 ( f g : Hom A a b )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
173 → A [ A [ (Id {_} {_} {_} {A} b) o f ] ≈ A [ (Id {_} {_} {_} {A} b) o g ] ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
174 → A [ g ≈ f ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
175 Lemma62 A {a} {b} f g 1g=1f = let open ≈-Reasoning A in
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
176 begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
177 g
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
178 ≈↑⟨ idL ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
179 id b o g
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
180 ≈↑⟨ 1g=1f ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
181 id b o f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
182 ≈⟨ idL ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
183 f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 168
diff changeset
184