Mercurial > hg > Members > kono > Proof > category
annotate discrete.agda @ 778:06388660995b
fix applicative for Agda version 2.5.4.1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 26 Sep 2018 20:17:09 +0900 |
parents | 4c0a955b651d |
children | 340708e8d54f |
rev | line source |
---|---|
448
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import Category -- https://github.com/konn/category-agda |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
2 open import Level |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
3 |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
4 module discrete where |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
6 open import Relation.Binary.Core |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
7 |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
8 data TwoObject {c₁ : Level} : Set c₁ where |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
9 t0 : TwoObject |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
10 t1 : TwoObject |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
11 |
458 | 12 --- |
13 --- two objects category ( for limit to equalizer proof ) | |
448
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
14 --- |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
15 --- f |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
16 --- -----→ |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
17 --- 0 1 |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
18 --- -----→ |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
19 --- g |
457
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
20 -- |
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
21 -- missing arrows are constrainted by TwoHom data |
448
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
22 |
455 | 23 data TwoHom {c₁ c₂ : Level } : TwoObject {c₁} → TwoObject {c₁} → Set c₂ where |
466 | 24 id-t0 : TwoHom t0 t0 |
25 id-t1 : TwoHom t1 t1 | |
455 | 26 arrow-f : TwoHom t0 t1 |
27 arrow-g : TwoHom t0 t1 | |
448
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
28 |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
29 |
461 | 30 _×_ : ∀ {c₁ c₂} → {a b c : TwoObject {c₁}} → TwoHom {c₁} {c₂} b c → TwoHom {c₁} {c₂} a b → TwoHom {c₁} {c₂} a c |
466 | 31 _×_ {_} {_} {t0} {t1} {t1} id-t1 arrow-f = arrow-f |
32 _×_ {_} {_} {t0} {t1} {t1} id-t1 arrow-g = arrow-g | |
33 _×_ {_} {_} {t1} {t1} {t1} id-t1 id-t1 = id-t1 | |
34 _×_ {_} {_} {t0} {t0} {t1} arrow-f id-t0 = arrow-f | |
35 _×_ {_} {_} {t0} {t0} {t1} arrow-g id-t0 = arrow-g | |
36 _×_ {_} {_} {t0} {t0} {t0} id-t0 id-t0 = id-t0 | |
448
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
37 |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
38 open TwoHom |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
39 |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
40 -- f g h |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
41 -- d <- c <- b <- a |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
42 -- |
455 | 43 -- It can be proved without TwoHom constraints |
448
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
44 |
c2616de4d208
discrete again with negation
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
45 assoc-× : {c₁ c₂ : Level } {a b c d : TwoObject {c₁} } |
466 | 46 {f : (TwoHom {c₁} {c₂ } c d )} → {g : (TwoHom b c )} → {h : (TwoHom a b )} → |
455 | 47 ( f × (g × h)) ≡ ((f × g) × h ) |
466 | 48 assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} { id-t0 }{ id-t0 }{ id-t0 } = refl |
49 assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-f }{ id-t0 }{ id-t0 } = refl | |
50 assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-g }{ id-t0 }{ id-t0 } = refl | |
51 assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1 }{ arrow-f }{ id-t0 } = refl | |
52 assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1 }{ arrow-g }{ id-t0 } = refl | |
457
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
53 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} { id-t1 }{ id-t1 }{ arrow-f } = refl |
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
54 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} { id-t1 }{ id-t1 }{ arrow-g } = refl |
466 | 55 assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} { id-t1 }{ id-t1 }{ id-t1 } = refl |
449 | 56 |
57 TwoId : {c₁ c₂ : Level } (a : TwoObject {c₁} ) → (TwoHom {c₁} {c₂ } a a ) | |
455 | 58 TwoId {_} {_} t0 = id-t0 |
59 TwoId {_} {_} t1 = id-t1 | |
449 | 60 |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
61 open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong ) |
453
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
451
diff
changeset
|
62 |
455 | 63 TwoCat : {c₁ c₂ : Level } → Category c₁ c₂ c₂ |
64 TwoCat {c₁} {c₂} = record { | |
461 | 65 Obj = TwoObject ; |
66 Hom = λ a b → TwoHom a b ; | |
449 | 67 _o_ = λ{a} {b} {c} x y → _×_ {c₁ } { c₂} {a} {b} {c} x y ; |
455 | 68 _≈_ = λ x y → x ≡ y ; |
461 | 69 Id = λ{a} → TwoId a ; |
449 | 70 isCategory = record { |
453
3c2ce4474d92
try incomplete pattern for discrete
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
451
diff
changeset
|
71 isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; |
449 | 72 identityL = λ{a b f} → identityL {c₁} {c₂ } {a} {b} {f} ; |
73 identityR = λ{a b f} → identityR {c₁} {c₂ } {a} {b} {f} ; | |
74 o-resp-≈ = λ{a b c f g h i} → o-resp-≈ {c₁} {c₂ } {a} {b} {c} {f} {g} {h} {i} ; | |
75 associative = λ{a b c d f g h } → assoc-× {c₁} {c₂} {a} {b} {c} {d} {f} {g} {h} | |
76 } | |
77 } where | |
455 | 78 identityL : {c₁ c₂ : Level } {A B : TwoObject {c₁}} {f : ( TwoHom {c₁} {c₂ } A B) } → ((TwoId B) × f) ≡ f |
457
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
79 identityL {c₁} {c₂} {t1} {t1} { id-t1 } = refl |
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
80 identityL {c₁} {c₂} {t0} {t0} { id-t0 } = refl |
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
81 identityL {c₁} {c₂} {t0} {t1} { arrow-f } = refl |
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
82 identityL {c₁} {c₂} {t0} {t1} { arrow-g } = refl |
455 | 83 identityR : {c₁ c₂ : Level } {A B : TwoObject {c₁}} {f : ( TwoHom {c₁} {c₂ } A B) } → ( f × TwoId A ) ≡ f |
457
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
84 identityR {c₁} {c₂} {t1} {t1} { id-t1 } = refl |
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
85 identityR {c₁} {c₂} {t0} {t0} { id-t0 } = refl |
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
86 identityR {c₁} {c₂} {t0} {t1} { arrow-f } = refl |
0ba86e29f492
limit-to and discrete clean up
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
456
diff
changeset
|
87 identityR {c₁} {c₂} {t0} {t1} { arrow-g } = refl |
449 | 88 o-resp-≈ : {c₁ c₂ : Level } {A B C : TwoObject {c₁} } {f g : ( TwoHom {c₁} {c₂ } A B)} {h i : ( TwoHom B C)} → |
455 | 89 f ≡ g → h ≡ i → ( h × f ) ≡ ( i × g ) |
461 | 90 o-resp-≈ {c₁} {c₂} {a} {b} {c} {f} {.f} {h} {.h} refl refl = refl |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
91 |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
92 |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
93 -- Category with no arrow but identity |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
94 |
778
06388660995b
fix applicative for Agda version 2.5.4.1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
475
diff
changeset
|
95 record DiscreteHom { c₁ : Level} { S : Set c₁} (a : S) (b : S) |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
96 : Set c₁ where |
469
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
97 field |
474 | 98 discrete : a ≡ b -- if f : a → b then a ≡ b |
778
06388660995b
fix applicative for Agda version 2.5.4.1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
475
diff
changeset
|
99 dom : S |
472
f3d6d0275a0a
discrete equality as a dom equality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
469
diff
changeset
|
100 dom = a |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
101 |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
102 open DiscreteHom |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
103 |
778
06388660995b
fix applicative for Agda version 2.5.4.1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
475
diff
changeset
|
104 _*_ : ∀ {c₁} → {S : Set c₁} {a b c : S} → DiscreteHom {c₁} b c → DiscreteHom {c₁} a b → DiscreteHom {c₁} a c |
469
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
105 _*_ {_} {a} {b} {c} x y = record {discrete = trans ( discrete y) (discrete x) } |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
106 |
778
06388660995b
fix applicative for Agda version 2.5.4.1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
475
diff
changeset
|
107 DiscreteId : { c₁ : Level} { S : Set c₁} ( a : S ) → DiscreteHom {c₁} a a |
469
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
108 DiscreteId a = record { discrete = refl } |
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
109 |
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
110 open import Relation.Binary.PropositionalEquality |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
111 |
778
06388660995b
fix applicative for Agda version 2.5.4.1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
475
diff
changeset
|
112 assoc-* : {c₁ : Level } { S : Set c₁} {a b c d : S} |
469
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
113 {f : (DiscreteHom c d )} → {g : (DiscreteHom b c )} → {h : (DiscreteHom a b )} → |
472
f3d6d0275a0a
discrete equality as a dom equality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
469
diff
changeset
|
114 dom ( f * (g * h)) ≡ dom ((f * g) * h ) |
f3d6d0275a0a
discrete equality as a dom equality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
469
diff
changeset
|
115 assoc-* {c₁} {S} {a} {b} {c} {d} {f} {g} {h } = refl |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
116 |
469
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
117 DiscreteCat : {c₁ : Level } → (S : Set c₁) → Category c₁ c₁ c₁ |
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
118 DiscreteCat {c₁} S = record { |
778
06388660995b
fix applicative for Agda version 2.5.4.1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
475
diff
changeset
|
119 Obj = S ; |
469
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
120 Hom = λ a b → DiscreteHom {c₁} {S} a b ; |
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
121 _o_ = λ{a} {b} {c} x y → _*_ {c₁ } {S} {a} {b} {c} x y ; |
474 | 122 _≈_ = λ x y → dom x ≡ dom y ; -- x ≡ y does not work because refl ≡ discrete f is failed as it should be |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
123 Id = λ{a} → DiscreteId a ; |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
124 isCategory = record { |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
125 isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; |
469
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
126 identityL = λ{a b f} → identityL {a} {b} {f} ; |
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
127 identityR = λ{a b f} → identityR {a} {b} {f} ; |
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
128 o-resp-≈ = λ{a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; |
65ab0da524b8
discrete f ≡ refl should be passed, but it doesn't
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
468
diff
changeset
|
129 associative = λ{a b c d f g h } → assoc-* { c₁} {S} {a} {b} {c} {d} {f} {g} {h} |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
130 } |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
131 } where |
778
06388660995b
fix applicative for Agda version 2.5.4.1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
475
diff
changeset
|
132 identityL : {a b : S} {f : ( DiscreteHom {c₁} a b) } → dom ((DiscreteId b) * f) ≡ dom f |
472
f3d6d0275a0a
discrete equality as a dom equality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
469
diff
changeset
|
133 identityL {a} {b} {f} = refl |
778
06388660995b
fix applicative for Agda version 2.5.4.1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
475
diff
changeset
|
134 identityR : {A B : S} {f : ( DiscreteHom {c₁} A B) } → dom ( f * DiscreteId A ) ≡ dom f |
472
f3d6d0275a0a
discrete equality as a dom equality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
469
diff
changeset
|
135 identityR {a} {b} {f} = refl |
778
06388660995b
fix applicative for Agda version 2.5.4.1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
475
diff
changeset
|
136 o-resp-≈ : {A B C : S } {f g : ( DiscreteHom {c₁} A B)} {h i : ( DiscreteHom B C)} → |
472
f3d6d0275a0a
discrete equality as a dom equality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
469
diff
changeset
|
137 dom f ≡ dom g → dom h ≡ dom i → dom ( h * f ) ≡ dom ( i * g ) |
f3d6d0275a0a
discrete equality as a dom equality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
469
diff
changeset
|
138 o-resp-≈ {a} {b} {c} {f} {g} {h} {i} refl refl = refl |
468
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
139 |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
140 |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
141 |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
142 |
c375d8f93a2c
discrete category and product from a limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
466
diff
changeset
|
143 |
472
f3d6d0275a0a
discrete equality as a dom equality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
469
diff
changeset
|
144 |