Mercurial > hg > Members > kono > Proof > category
annotate category.ind @ 135:3f3870e867f2
on going...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 11 Aug 2013 16:56:17 +0900 |
parents | 276f33602700 |
children |
rev | line source |
---|---|
0 | 1 -title: Cateogry |
2 | |
65 | 3 --author: Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
4 | |
0 | 5 \usepackage{tikz} |
6 \usepackage{tikz-cd} | |
7 | |
8 --Adjunction | |
9 | |
10 \begin{eqnarray*} | |
11 Uε○ηU & = & 1_U \\ | |
12 εF○Fη & = & 1_F | |
13 \end{eqnarray*} | |
14 | |
15 $f: a -> Ub $ | |
16 | |
31 | 17 ----begin-comment: |
18 FU(b) | |
19 ・ | | |
20 ・ | | |
21 F(f) ・ | | |
22 ・ ε(b) | |
23 ・ | | |
24 ・ f* v | |
25 F(a) -----------------> b | |
0 | 26 |
31 | 27 U(f*) |
28 UF(a) -----------------> Ub | |
29 ^ ・ | |
30 | ・ | |
31 | ・ | |
32 η(a) ・ f | |
33 | ・ | |
34 | ・ f = U(f*)η | |
35 |・ | |
36 a | |
0 | 37 |
31 | 38 ----end-comment: |
0 | 39 |
40 \begin{tikzcd} | |
41 \mbox{} & FU(b) \arrow{d}{ε(b)} \\ | |
42 F(a) \arrow{ru}{F(f)} \arrow{r}{f*} & b \\ | |
43 UF(a) \arrow{r}{U(f*)} & Ub \\ | |
44 a \arrow{u}{η(a)} \arrow{ru}{f} & \\ | |
45 \end{tikzcd} | |
46 | |
47 Universal mapping problem is | |
48 for each $f:->Ub$, there exists $f*$ such that $f = U(f*)η$. | |
49 | |
50 --Adjunction to Universal mapping | |
51 | |
52 In adjunction $(F,U,ε,η)$, put $f* = ε(b)F(f)$, | |
53 we are going to prove $f*$ is a solution of Universal mmapping problem. That is $U(f*)η = f$. | |
54 | |
55 \begin{tikzcd} | |
56 UF(a) \arrow{r}[swap]{UF(f)} \arrow[bend left]{rr}{U(ε(b)F(f))=U(f*)} | |
57 & UFUb \arrow{r}[swap]{U(ε(b))} & \mbox{?} \\ | |
58 a \arrow{u}{η(a)} \arrow{r}[swap]{f} & Ub \arrow{u}{η(Ub)} \\ | |
59 \end{tikzcd} | |
60 | |
61 \begin{tikzcd} | |
62 UF(a) \arrow{rd}[swap]{U(f*)} \arrow{r}{UF(f)} & UFUb \arrow[bend left]{d}{U(ε(b))} \\ | |
63 a \arrow{u}{η(a)} \arrow{r}[swap]{f} & Ub \arrow{u}{η(Ub)} \\ | |
64 F(a) \arrow{r}{F(f)} \arrow{rd}[swap]{f*} & FU(b) \arrow{d}{ε(b)} \\ | |
65 \mbox{} & b \\ | |
66 \end{tikzcd} | |
67 ∵$ Uε○ηU = 1_U $ | |
68 | |
69 \[ U(ε(b))η(U(b)) = 1_{U(b)} \] | |
70 | |
71 means that | |
72 | |
73 $ε(b) : FU(b)->b $ is solution of $1_{U(b)}$. | |
74 | |
75 naturality $ fη(U(b)) = U(F(f))η(a) $ | |
76 | |
77 gives solution $ U(ε(b))UF(f) = U(F(f)ε(b)) $ for $f$. | |
78 | |
79 | |
80 | |
81 \[ U(f*)η(a)(a) = f(a) \] | |
82 | |
83 then | |
84 | |
85 $U(ε(b)F(f))η(a)(a) = U(ε(b))UF(f)η(a)(a) $ | |
86 | |
87 since $F$ is a functor. And we have | |
88 | |
89 $U(ε(b))UF(f)η(a)(a) = U(ε(b))η(b)f(a)$ | |
90 | |
91 because of naturality of $η$ | |
92 | |
31 | 93 ----begin-comment: |
94 η(a) | |
95 UF(a) <------- a UF(f)η(a) = η(b)f | |
96 | | | |
97 |UF(f) f| | |
98 v v | |
99 UF(b) <------- b | |
100 η(b) | |
0 | 101 |
31 | 102 ----end-comment: |
0 | 103 |
104 \begin{tikzcd} | |
105 UF(a) \arrow[leftarrow]{r}{η(a)} \arrow{d}{UF(f)} & a \arrow{d}{f} & UF(f)η(a) = η(b)f \\ | |
106 UF(b) \arrow[leftarrow]{r}{η(b)} & b & | |
107 \end{tikzcd} | |
108 | |
109 too bad.... we need some thing more. | |
110 | |
111 | |
112 ---Adjoint of η | |
113 | |
114 $ Uε○ηU = 1_U $ | |
115 | |
31 | 116 ----begin-comment: |
117 F(f) ε(b) | |
118 F(a) ---------> FU(b) --------> b | |
0 | 119 |
31 | 120 UF(f) U(ε(b)) |
121 UF(a) --------> UFU(b) --------> U(b) | |
0 | 122 |
31 | 123 η(a) UF(f) U(ε(b)) |
124 a ---------> UF(a) --------> UFU(b) --------> U(b) | |
0 | 125 |
31 | 126 f η(Ub) U(ε(b)) |
127 a ---------> Ub --------> UFU(b) --------> U(b) | |
0 | 128 |
31 | 129 η(Ub) U(ε(b)) = 1 |
130 ∵ Uε○ηU = 1_U | |
0 | 131 |
31 | 132 ----end-comment: |
0 | 133 |
134 \begin{tikzcd} | |
135 F(a) \arrow{r}{F(f)} & FU(b) \arrow{r}{ε(b)} & b & \\ | |
136 UF(a) \arrow{r}{UF(f)} & UFU(b) \arrow{r}{U(ε(b))} & U(b) & \\ | |
137 a \arrow{r}{η(a)} & UF(a) \arrow{r}{UF(f)} & UFU(b) \arrow{r}{U(ε(b))} & U(b) \\ | |
138 a \arrow{r}{f} & Ub \arrow{r}{η(Ub)}[swap]{η(Ub)} & UFU(b) \arrow{r}{U(ε(b))}[swap]{U(ε(b))=1} & U(b) \\ | |
139 \end{tikzcd} | |
140 | |
141 | |
142 ∵ $Uε○ηU = 1_U$ | |
143 | |
144 naturality of $f:a->Ub$ | |
145 | |
31 | 146 ----begin-comment: |
0 | 147 |
31 | 148 η(Ub) |
149 Ub ---------> UF(Ub) | |
150 ^ ^ | |
151 | | | |
152 f| |UF(f) | |
153 | η(a) | | |
154 a ---------> UF(a) | |
0 | 155 |
31 | 156 ----end-comment: |
0 | 157 |
158 \begin{tikzcd} | |
159 Ub \arrow{r}{η(Ub)} & UF(Ub) \\ | |
160 a \arrow{u}{f} \arrow{r}{η(a)} & UF(a) \arrow{u}[swap]{UF(f)} | |
161 \end{tikzcd} | |
162 | |
31 | 163 ----begin-comment: |
0 | 164 |
31 | 165 UF(f) |
166 UF(a) ------------->UF(U(b)) UF(U(b)) | |
167 ^ ^ | | |
168 | | | | |
0 | 169 η(a)| η(U(b))| |U(ε(U(b))) |
31 | 170 | f | v |
171 a --------------->U(b) U(b) | |
0 | 172 |
31 | 173 ----end-comment: |
0 | 174 |
175 \begin{tikzcd} | |
176 UF(a) \arrow{r}{UF(f)} & UF(U(b)) & UF(U(b)) \arrow{d}{U(ε(U(b)))} & \mbox{} \\ | |
177 a \arrow{r}{f} \arrow{u}[swap]{η(a)} & U(b) \arrow{u}[swap]{η(U(b))} & U(b) & \mbox{} \\ | |
178 \end{tikzcd} | |
179 | |
180 Solution of universal mapping yields naturality of $Uε○ηU = 1_U$. | |
181 | |
31 | 182 ----begin-comment: |
0 | 183 |
31 | 184 F(η(a)) |
185 UF(a) F(a) ----------> FUF(a) | |
186 ^ | | |
187 | | | |
0 | 188 η(a)| |ε(F(a)) |
31 | 189 | η(a) v |
190 a --------------->UF(a) F(a) | |
0 | 191 |
31 | 192 ----end-comment: |
0 | 193 |
194 $εF○Fη = 1_F$. | |
195 | |
196 \begin{tikzcd} | |
197 UF(a) \arrow{rd}[swap]{1_{UF(a)}} & F(a) \arrow{r}{F(η(a))} \arrow{rd}{1_{F(a)}}[swap]{(1_{UF(a)})*} & FUF(a) \arrow{d}{ε(F(a))} & \mbox{} \\ | |
198 a \arrow{r}[swap]{η(a)} \arrow{u}{η(a)} & UF(a) & F(a) & \mbox{} \\ | |
199 \end{tikzcd} | |
200 | |
201 --Universal mapping to adjunction | |
202 | |
203 Functor $U$, mapping $F(a)$ and $(f)*, U(f*)η(a) = f $ are given. | |
204 | |
205 object $F(a):A -> B$ | |
206 | |
207 $ η(a): a->UF(a)$ | |
208 | |
209 put | |
42 | 210 \[ F(f) = (η(b)f)* \] |
0 | 211 \[ ε : FU -> 1_B \] |
212 \[ ε(b) = (1_{U(b)})* \] | |
213 | |
31 | 214 ----begin-comment: |
215 f* | |
216 F(a) -----------------> b | |
0 | 217 |
31 | 218 U(f*) |
219 UF(a) -----------------> Ub | |
220 ^ ・ | |
221 | ・ | |
222 | ・ | |
223 η(a) ・ f | |
224 | ・ | |
225 | ・ f = U(f*)η | |
226 |・ | |
227 a | |
228 ----end-comment: | |
0 | 229 |
230 \begin{tikzcd} | |
231 F(a) \arrow{r}{f*} & b \\ | |
232 UF(a) \arrow{r}{U(f*)} & Ub \\ | |
233 a \arrow{u}{η(a)} \arrow{ur}{f} | |
234 \end{tikzcd} | |
235 | |
236 $f = U(f*)η$ | |
237 | |
238 Show F is a Functor, that is $F(fg) = F(f)F(g)$. | |
239 | |
240 Show naturality of $η(a)$. | |
241 | |
242 \[ f:a->b, F(f) = (η(b)f)*\] | |
243 | |
244 Show naturality of $ε(b) = (1_U)*$. | |
245 | |
246 ---Definitions | |
247 | |
248 f's destination | |
249 \[ f: a -> U(b) \] | |
250 universal mapping | |
251 \[ U(f*)η(a) = f \] | |
252 defnition of F(f) | |
253 \[ F(f) = (η(U(b))f)* \] | |
254 definition of $ε$ | |
255 \[ ε(b) = (1_{U(b)})* \] | |
256 | |
31 | 257 ----begin-comment: |
0 | 258 |
31 | 259 FU(f*) |
260 FUF(a)------------->FU(b) | |
261 ^| | | |
262 ||ε(F(a)) | | |
263 F(η(a))|| |ε(b)=(1_U(b))* | |
264 || (η(Ub)f)*=F(f) | | |
265 |v v | |
266 F(a) --------------->b | |
267 f* | |
268 UF(f) | |
269 UF(a)------------->UFU(b) | |
270 ^ ^| | |
271 | U(f*) || | |
272 η(a)| η(U(b))||U(ε(b)) | |
273 | || | |
274 | |v | |
275 a --------------->U(b) | |
276 f | |
0 | 277 |
31 | 278 ----end-comment: |
0 | 279 |
280 \begin{tikzcd} | |
281 FUF(a) \arrow{r}{FU(f*)} \arrow{d}{ε(F(a))} & FU(b) \arrow{d}{ε(b)=(1_U(b))*} & \mbox{} \\ | |
282 F(a) \arrow{r}[swap]{f*} \arrow[bend left]{u}{F(η(a))} \arrow{ru}[swap]{F(f)} & b & \mbox{} \\ | |
283 UF(a) \arrow{r}{UF(f)} \arrow{rd}[swap]{U(f*)} & UFU(b) \arrow[bend left]{d}{U(ε(b))} & \mbox{} \\ | |
284 a \arrow{r}[swap]{f} \arrow{u}{η(a)} & U(b) \arrow{u}{η(U(b))} & \mbox{} \\ | |
285 \end{tikzcd} | |
286 | |
287 $εF○Fη = 1_F$, | |
288 $ ε(b) = (1_{U(b)})* $, | |
289 | |
290 $ ε(F(a)) = (1_{UF(a)})* $ | |
291 | |
292 | |
31 | 293 ----begin-comment: |
0 | 294 |
31 | 295 F(η(a)) |
296 UF(a) F(a) --------------> FUF(a) | |
297 ^ |^ | |
298 | || | |
299 η(a)| U(1_{F(a)}) 1_{F(a)} ε(F(a))||F(η(a)) | |
300 | || | |
301 | v| | |
302 a ---------------> U(F(a)) F(a) | |
303 η(a) | |
0 | 304 |
31 | 305 ----end-comment: |
0 | 306 |
307 \begin{tikzcd} | |
308 UF(a) \arrow{rd}{U(1_{F(a)}) } & F(a) \arrow{r}{F(η(a))} \arrow{rd}[swap]{1_{F(a)}} & FUF(a) \arrow{d}[swap]{ε(F(a))} & \mbox{} \\ | |
309 a \arrow{r}[swap]{η(a)} \arrow{u}{η(a)} & U(F(a)) & F(a) \arrow[bend right]{u}[swap]{F(η(a))} & \mbox{} \\ | |
310 \end{tikzcd} | |
311 | |
312 | |
313 | |
314 | |
315 | |
316 --- Functor F | |
317 | |
318 \[ F(f) = (η(b)f)* \] | |
319 | |
320 \[ U(F(f))η(a) = η(b)f \] | |
321 | |
322 | |
323 show $F(fg) = F(f)F(g)$ | |
324 | |
325 | |
31 | 326 ----begin-comment: |
327 g f | |
328 a -----> Ub ----> UUc | |
329 ----end-comment: | |
0 | 330 |
331 \begin{tikzcd} | |
332 a \arrow{r}{g} & Ub \arrow{r}{f} & UUc | |
333 \end{tikzcd} | |
334 | |
335 \begin{eqnarray*} | |
336 U(F(g))η(a) & = & η(Ub)g \\ | |
337 U(F(f))η(Ub) & = & η(UUc)f | |
338 \end{eqnarray*} | |
339 | |
340 show | |
341 \[ | |
342 U(F(f)F(g))η(a) = η(UUc)fg | |
343 \] | |
344 | |
345 then $F(f)F(g) = F(fg)$ | |
346 | |
347 \begin{eqnarray*} | |
348 U(F(f)F(g))η(a) & = & UF(f)UF(g)η(a) \\ | |
349 & = & UF(f)η(Ub)g \\ | |
350 & = & η(UUc)fg | |
351 \end{eqnarray*} | |
352 \mbox{Q.E.D.} | |
353 | |
31 | 354 ----begin-comment: |
355 FU(f) | |
356 FU(b) -------------> FUU(c) | |
357 ・ | | | |
358 ・ | | | |
359 F(g) ・ | | | |
360 ・ ε(b) ε(Uc) | | |
361 ・ | | | |
362 ・ g* v f* v | |
363 F(a) -----------------> b ---------------> c | |
0 | 364 |
31 | 365 U(F(f)) |
366 UF(a) UFUb | |
367 ^ ・ ^ ・ | |
368 | ・ | ・ | |
369 | ・ | ・ | |
370 η(a) ・ UFg | ・ UFf | |
371 | ・ η(Ub) ・ | |
372 | ・ | ・ | |
373 | g ・ | f ・ | |
374 a -----------------> Ub ---------------> UU(c) | |
375 ----end-comment: | |
0 | 376 |
377 | |
378 \begin{tikzcd} | |
379 F(a) \arrow{r}{F(g)} \arrow{rd}{g*}& FU(b) \arrow{r}{FU(f)} \arrow{d}{ε(b)} \arrow{rd}{f*} & FUU(c) \arrow{d}{ε(Uc)} \\ | |
380 \mbox{} & b & U(c) \\ | |
381 \\ | |
382 UF(a) \arrow{rd}{U(g*)} \arrow{r}{UFg} & UFUb \arrow{rd}{Uf*} \arrow{r}{UFf} & UFUUc \\ | |
383 a \arrow{r}{g}\arrow{u}{η(a)} & Ub \arrow{r}{f} \arrow{u}[swap]{η(Ub)} & UU(c) \arrow{u}[swap]{η(UUc)} | |
384 \end{tikzcd} | |
385 | |
386 --- naturality of η | |
387 | |
388 $ η: 1->UB $ | |
389 | |
31 | 390 ----begin-comment: |
0 | 391 |
31 | 392 UF(a)-----------------> UFb |
393 ^ UF(f) ^ | |
394 | | | |
395 | | | |
396 η(a) η(b) | |
397 | | | |
398 | f | | |
399 a -----------------> b | |
400 ----end-comment: | |
0 | 401 |
402 \begin{tikzcd} | |
403 UF(a) \arrow{r}[swap]{UF(f)} & UFb \\ | |
404 a \arrow{r}{f} \arrow{u}{η(a)} & b \arrow{u}{η(b)} | |
405 \end{tikzcd} | |
406 | |
407 prove $η(b)f = UF(f)η(a) $ | |
408 \begin{eqnarray*} | |
409 & η(b)f: & a-> UFb \\ | |
410 F(f) & = & (η(b)f)* \mbox{\hspace{1cm}(definition)} \\ | |
411 η(b)f & = & U(F(f))η(a) | |
412 \end{eqnarray*} | |
413 \mbox{Q.E.D.} | |
414 | |
415 --- naturality of ε | |
416 | |
417 \[ | |
418 ε : FU -> 1_B | |
419 \] | |
420 \[ | |
421 U: B->A | |
422 \] | |
423 | |
424 $ ε(b) = (1_{U(b)})*$ | |
425 | |
426 $ U(ε(b))η(U(b)) = 1_{U(b)}$ | |
427 | |
428 $ U(ε(b))η(U(b))U(b) = U(b)$ | |
429 | |
430 | |
31 | 431 ----begin-comment: |
432 FU(f) | |
433 FU(b) -------------> FU(c) | |
434 | | | |
435 | | | |
436 ε(b) | ε(c) | |
437 | | | |
438 v f v | |
439 b ---------------> c | |
440 ----end-comment: | |
0 | 441 |
442 \begin{tikzcd} | |
443 FU(b) \arrow{r}{FU(f)} \arrow{d}{ε(b)} & FU(c) \arrow{d}{ε(c)}\\ | |
444 b \arrow{r}{f} & c | |
445 \end{tikzcd} | |
446 | |
447 prove $fε(b) = ε(c)FU(f)$ | |
448 | |
449 | |
450 \[ f = Ub -> Uc \] | |
451 | |
31 | 452 ----begin-comment: |
0 | 453 |
31 | 454 FU(f) (1_U(c))* |
455 F(Ub) --------------> FU(c) ---------------> c | |
0 | 456 |
31 | 457 (1_U(b))* f |
458 F(Ub) ----------------> b -----------------> c | |
0 | 459 |
31 | 460 U(1_U(b)*) U(f) |
461 UF(Ub) ----------------> Ub -----------------> U(c) | |
462 || ・ || | |
463 || ・ || | |
464 || UFU(f) ・ U(1_U(c)*) || | |
465 UF(Ub) ----- ・ ------> UFUc ---------------> U(c) | |
466 ^ ・ ^ || | |
467 | ・ | || | |
468 η(Ub) ・ 1_Ub η(Uc) | || | |
469 |・ | 1_Uc || | |
470 Ub ------------------> Uc -----------------> U(c) | |
471 U(f) | |
0 | 472 |
31 | 473 ----end-comment: |
0 | 474 |
475 \begin{tikzcd} | |
476 F(Ub) \arrow{r}{(1_{U(b)})*} & b \arrow{r}{f} & c \\ | |
477 UF(Ub) \arrow{r}{U(1_{U(b)})*} \arrow{rd}[swap]{UFU(f)} & Ub \arrow{r}{U(f)} & U(c) \\ | |
478 \mbox{} & UFUc \arrow{ru}{U(1_U(c)*)} & \\ | |
479 Ub \arrow{r}{U(f)} \arrow{ruu}[swap]{1_{Ub}} \arrow{uu}{η(Ub)} & Uc \arrow{ruu}[swap]{1_{Uc}} \arrow{u}{η(Uc)} \\ | |
480 F(Ub) \arrow{r}{FU(f)} & FU(c) \arrow{r}{(1_{U(c)})*} & c \\ | |
481 \end{tikzcd} | |
482 | |
31 | 483 ----begin-comment: |
0 | 484 |
485 \begin{tikzcd} | |
486 \mbox{} & Ub \arrow{r}{U(f)} & U(c) \\ | |
487 UF(Ub) \arrow{ru}{U(1_U(b)*)} \arrow{r}[swap]{UFU(f)} & UFUc \arrow{ru}{U(1_U(c)*)} & \\ | |
488 Ub \arrow{r}{U(f)} \arrow{ruu}{1_Ub} \arrow{u}{η(Ub)} & Uc \arrow{ruu}[swap]{1_Uc} \arrow{u}{η(Uc)} & \mbox{} | |
489 \end{tikzcd} | |
490 | |
491 | |
492 \begin{tikzcd} | |
493 UF(Ub) \arrow{d}{U(1_U(b)*)} \arrow{r}{UFU(f)} & UFUc \arrow{d}{U(1_U(c)*)} \\ | |
494 Ub \arrow{r}{U(f)} & U(c) \\ | |
495 Ub \arrow{r}{U(f)} \arrow{u}{1_Ub} \arrow[bend left]{uu}{η(Ub)} & Uc \arrow{u}[swap]{1_Uc} \arrow[bend right]{uu}[swap]{η(Uc)} | |
496 \end{tikzcd} | |
497 | |
31 | 498 ----end-comment: |
0 | 499 |
500 | |
501 show $ε(c)FU(f)$ and $fε(b)$ are both solution of $(1_{Uc})U(f) ( = U(f)(1_{Ub}))$ | |
502 | |
503 \[ | |
504 (fε(b)))η(Ub)Ub = U(f))U(ε(b))η(Ub)Ub | |
505 \] | |
506 \[ | |
507 = U(f)1_{U(b)}Ub = U(f)Ub = Ufb = U(f)(1_{Ub})Ub | |
508 \] | |
509 \[ | |
510 \mbox{∴}fε(b) = (U(f)(1_{Ub}))* | |
511 \] | |
512 | |
513 $ UFU(f)η(Ub) = η(Uc)U(f)$ naturality of η | |
514 | |
515 \[ | |
516 U(ε(c)FU(f))η(Ub)Ub = U(ε(c))UFU(f)η(Ub)Ub | |
517 \] | |
518 \[ | |
519 = U(ε(c))η(Uc)U(f)Ub = 1_{U(c)}U(f)Ub = U(f)Ub = U(f)(1_{Ub})Ub | |
520 \] | |
521 \[ | |
522 \mbox{∵} U(ε(c))η(Uc) = 1_U(c) | |
523 \] | |
524 | |
525 end of proof. | |
526 | |
31 | 527 ----begin-comment: |
528 U(f*) | |
529 c U(c) <- ----------- U(b) b | |
530 ^ ^| |^ ^ | |
531 | U(ε(c))||η(U(c)) η(U(b))||U(ε(b)) | | |
532 |ε(c) || || ε(b)| | |
533 | |v UFU(f) v| | | |
534 FU(c) UFU(c) <----------- UFU(b) FU(b) | |
535 ----end-comment: | |
0 | 536 |
537 \begin{tikzcd} | |
538 c \arrow[bend left,leftarrow]{rrr}{f} | |
539 & U(c) \arrow[leftarrow]{r}{U(f)} \arrow{d}{η(U(c))} & U(b) \arrow{d}[swap]{η(U(b))} & b \\ | |
540 FU(c) \arrow{u}{(1_{Uc})* = ε(c)} \arrow[bend right,leftarrow]{rrr}{FU(f)} & | |
541 UFU(c) \arrow[leftarrow]{r}{UFU(f)} \arrow[bend left]{u}{U(ε(c))} & UFU(b) \arrow[bend right]{u}[swap]{U(ε(b))} | |
542 & FU(b) \arrow{u}[swap]{ε(b) = (1_{Ub})*} | |
543 \end{tikzcd} | |
544 | |
545 It also prove | |
546 | |
547 \[ Uε○ηU = 1_U\] | |
548 | |
549 ---$Uε○ηU = 1_U$ | |
550 | |
551 $ ε(b) = (1_U(b))* $ | |
552 | |
553 that is | |
554 | |
555 $ U((1_U(b)*)η(U(b)) = 1_U(b) $ | |
556 $ U(ε(b))η(U(b)) = 1_U(b) $ | |
557 | |
558 $ \mbox{∴} Uε○ηU = 1_U $ | |
559 | |
560 --- $εF○Fη = 1_F$ | |
561 | |
562 $ η(a) = U(1_F(a))η(a) $ | |
563 | |
564 $=> (η(a))* = 1_F(a)$ ... (1) | |
565 | |
566 $ ε(F(a)) = (1_UF(a))*$ | |
567 | |
568 $=> 1_UF(a) = U(ε(F(a)))η(UF(a)) $ | |
569 | |
570 times $η(a)$ from left | |
571 | |
572 $ η(a) = U(ε(F(a)))η(UF(a))η(a)$ | |
573 | |
574 $η(UF(a)) = UFη(a)$ naturality of $η$ | |
575 | |
576 $ η(a) = U(ε(F(a)))(UFη(a))η(a) $ \\ | |
577 $ = U(ε(F(a)Fη(a)))η(a) $ \\ | |
578 $ => (η(a))* = ε(F(a))Fη(a) .... (2) $ \\ | |
579 | |
580 from (1),(2), since $(η(a))*$ is unique | |
581 | |
582 \[ ε(F(a))Fη(a) = 1_F(a) \] | |
583 | |
31 | 584 ----begin-comment: |
0 | 585 |
31 | 586 F U |
587 UF(a) --------> FUF(a) ----------> UFUF(a) FUF(a) | |
588 ^ ^| |^ ^| | |
589 | || || || | |
590 |η(a) F(η(a))||ε(F(a)) U(εF(a))||η(UF(a)) ||ε(F(a)) | |
591 | || || || | |
592 | F |v U v| |v | |
593 a ------------> F(a) ------------> UF(a) F(a) | |
594 ----end-comment: | |
0 | 595 |
596 | |
597 \begin{tikzcd} | |
598 UF(a) \arrow{r}{F}& FUF(a) \arrow{rr}{U} \arrow[bend left]{d}{ε(F(a))} & \mbox{} & UFUF(a) \arrow[bend left]{d}{U(εF(a))} \\ | |
599 a \arrow{r}{F} \arrow{u}{η(a)} & F(a) \arrow{rr}{U} \arrow[bend left]{u}{F(η(a))} & \mbox{} & UF(a) \arrow[bend left]{u}{η(UF(a))} \\ | |
600 \mbox{} & F(a) \arrow{u}{(η(a))* = 1_{Fa}} \arrow{rr}{U} & & UF(a) \arrow{u}[swap]{η(a) = U(εF(a))η(UF(a))} | |
601 \end{tikzcd} | |
602 | |
603 \begin{tikzcd} | |
604 UF(a) \arrow{r}{F} & FUF(a) \arrow{r}{U} \arrow[bend left]{d}{ε(F(a))} & UFUF(a) \arrow[bend right]{d}[swap]{U(εF(a))} & FUF(a) \arrow[bend left]{d}{ε(F(a))} & \mbox{} \\ | |
605 a \arrow{r}{F} \arrow{u}[swap]{η(a)} & F(a) \arrow{r}{U} \arrow[bend left]{u}{F(η(a))} & UF(a) \arrow[bend right]{u}[swap]{η(UF(a))} & F(a) \arrow{u}{} & \mbox{} \\ | |
606 \end{tikzcd} | |
607 | |
31 | 608 ----begin-comment: |
0 | 609 |
610 UUF(a) | |
611 ^ | | |
612 | | | |
613 η(UF(a))| |U(ε(Fa)) U(ε(F(a))η(UF(a)) = 1_UF(a) | |
614 | v ε(F(a) = (1_UF(a))* | |
615 UF(a) | |
31 | 616 ----end-comment: |
0 | 617 |
618 \begin{tikzcd} | |
619 UUF(a) \arrow[bend left]{d}{U(ε(Fa))} \\ | |
620 UF(a) \arrow[bend left]{u}{η(UF(a))} | |
621 \end{tikzcd} | |
622 $U(ε(F(a)))η(UF(a)) = 1_UF(a) $ \\ | |
623 $ ε(F(a)) = (1_UF(a))* $ | |
624 | |
625 | |
31 | 626 ----begin-comment: |
0 | 627 FA -------->UFA |
628 | | | |
629 | Fη(A) | UFηA | |
630 v v | |
631 FUFA ------>UFUFA | |
31 | 632 ----end-comment: |
0 | 633 |
634 \begin{tikzcd} | |
635 FA \arrow{r} \arrow{d}{Fη(A)} & UFA \arrow{d}{UFηA} \\ | |
636 FUFA \arrow{r} & UFUFA | |
637 \end{tikzcd} | |
638 | |
639 $ε(FA)$の定義から $U(ε(FA)): UFUFA→UFA$ | |
640 | |
641 唯一性から $ε(F(A)):FUFA→FA$ 従って | |
642 | |
643 \[ ε(F(A))Fη(A)=1 \] | |
644 | |
645 ってなのを考えました。 | |
646 | |
647 | |
648 $ Uη(A') = U(1(FA'))η(A')$より \\ | |
649 $ η(A')*=1(FA')$、 \\ | |
650 $ Uη(A') = U(ε(FA')Fη(A'))η(A')$より \\ | |
651 $ η(A')*=ε(FA')Fη(A')$から \\ | |
652 $ 1_F=εF.Fη$は言えました。 \\ | |
653 | |
654 後者で$η$の自然性と$ε$の定義を使いました。 | |
655 | |
656 | |
657 --おまけ | |
658 | |
659 $ εF○Fη=1_F, Uε○ηU = 1_U $ | |
31 | 660 ----begin-comment: |
0 | 661 |
662 U | |
663 UFU(a) <--------------- FU(a) | |
664 ^| | | |
665 η(U(a))||U(ε(a)) |ε(a) | |
666 |v v | |
667 U(a) <---------------- (a) | |
668 U | |
669 | |
670 F | |
671 FUF(a) <--------------- UF(a) | |
672 ^| ^ | |
673 Fη(a)||εF(a) |η(a) | |
674 |v | | |
675 F(a) <---------------- (a) | |
676 F | |
677 | |
31 | 678 ----end-comment: |
0 | 679 |
680 \begin{tikzcd} | |
681 UFU(a) \arrow[leftarrow]{r}{U} \arrow[bend left]{d}{U(ε(a))} & FU(a) \arrow{d}{ε(a)} & \mbox{} \\ | |
682 U(a) \arrow[leftarrow]{r}[swap]{U} \arrow[bend left]{u}{η(U(a))} & (a) & \mbox{} \\ | |
683 FUF(a) \arrow[leftarrow]{r}{F} \arrow[bend left]{d}{εF(a)} & UF(a) & \mbox{} \\ | |
684 F(a) \arrow[leftarrow]{r}[swap]{F} \arrow[bend left]{u}{Fη(a)} & (a) \arrow{u}[swap]{η(a)} & \mbox{} \\ | |
685 \end{tikzcd} | |
686 | |
687 | |
688 | |
689 なら、 $ FU(ε(F(a))) = εF(a) $ ? | |
690 | |
31 | 691 ----begin-comment: |
0 | 692 U |
693 UFU(F(a)) <--------------- FU(F(a)) | |
694 ^| | | |
695 η(U(a))||U(ε(F(a))) |ε(F(a)) | |
696 |v v | |
697 U(F(a)) <---------------- F(a) | |
698 U | |
699 | |
700 FU | |
701 FUFU(F(a)) <--------------- FU(F(a)) | |
702 ^| | | |
703 Fη(U(a))||FU(ε(F(a))) |ε(F(a)) | |
704 |v v | |
705 FU(F(a)) <---------------- F(a) | |
706 FU | |
707 | |
708 F | |
709 FUF(a) <--------------- UF(a) | |
710 ^| ^ | |
711 Fη(a)||εF(a) |η(a) | |
712 |v | | |
713 F(a) <---------------- (a) | |
714 F | |
31 | 715 ----end-comment: |
0 | 716 |
717 \begin{tikzcd} | |
718 UFU(F(a)) \arrow[leftarrow]{r}{U} \arrow[bend left]{d}{U(ε(F(a)))} & FU(F(a)) \arrow{d}{ε(F(a))} & \mbox{} \\ | |
719 U(F(a)) \arrow[leftarrow]{r}[swap]{U} \arrow[bend left]{u}{η(U(a))} & F(a) & \mbox{} \\ | |
720 FUFU(F(a)) \arrow[leftarrow]{r}{FU} \arrow[bend left]{d}{FU(ε(F(a)))} & FU(F(a)) \arrow{d}{ε(F(a))} & \mbox{} \\ | |
721 FU(F(a)) \arrow[leftarrow]{r}[swap]{FU} \arrow[bend left]{u}{Fη(U(a))} & F(a) & \mbox{} \\ | |
722 FUF(a) \arrow[leftarrow]{r}{F} \arrow[bend left]{d}{εF(a)} & UF(a) & \mbox{} \\ | |
723 F(a) \arrow[leftarrow]{r}[swap]{F} \arrow[bend left]{u}{Fη(a)} & (a) \arrow{u}[swap]{η(a)} & \mbox{} \\ | |
724 \end{tikzcd} | |
725 | |
726 --Monad | |
727 | |
728 $(T,η,μ)$ | |
729 | |
730 $ T: A -> A $ | |
731 | |
732 $ η: 1_A -> T $ | |
733 | |
734 $ μ: T^2 -> T $ | |
735 | |
736 $ μ○Tη = 1_T = μ○ηT $ Unity law | |
737 | |
738 $ μ○μT = μ○Tμ $ association law | |
739 | |
31 | 740 ----begin-comment: |
0 | 741 Tη μT |
742 T ---------> T^2 T^3---------> T^2 | |
743 |・ | | | | |
744 | ・1_T | | | | |
745 ηT| ・ |μ Tμ| |μ | |
746 | ・ | | | | |
747 v ・ v v v | |
748 T^2 -------> T T^2 --------> T | |
749 μ μ | |
31 | 750 ----end-comment: |
0 | 751 |
752 \begin{tikzcd} | |
753 T \arrow{r}{Tη} \arrow{d}[swap]{ηT} \arrow{rd}{1_T} & T^2 \arrow{d}{μ} & T^3 \arrow{r}{μT} \arrow{d}[swap]{Tμ}& T^2 \arrow{d}{μ} & \mbox{} \\ | |
754 T^2 \arrow{r}[swap]{μ} & T & T^2 \arrow{r}[swap]{μ} & T & \mbox{} \\ | |
755 \end{tikzcd} | |
756 | |
757 | |
758 --Adjoint to Monad | |
759 | |
760 Monad (UF, η, UεF) on adjoint (U,F, η, ε) | |
761 | |
762 \begin{eqnarray*} | |
763 εF○Fμ & = & 1_F \\ | |
764 Uε○μU & = & 1_U \\ | |
765 \end{eqnarray*} | |
766 | |
767 \begin{eqnarray*} | |
768 μ○Tη & = & (UεF)○(UFη) = U (εF○Fη) = U 1_F = 1_{UF} \\ | |
769 μ○ηT & = & (UεF)○(ηUF) = (Uε○ηU) F = 1_U F = 1_{UF} \\ | |
770 \end{eqnarray*} | |
771 | |
772 \begin{eqnarray*} | |
773 (UεF)○(ηUF) & = & (U(ε(F(b))))(UF(η(b))) \\ | |
774 & = & U(ε(F(b))F(η(b))) = U(1_F) \\ | |
775 \end{eqnarray*} | |
776 | |
31 | 777 ----begin-comment: |
0 | 778 |
779 UεFUF εFUF ε(a) | |
780 UFUFUF-------> UFUF FUFUF-------> FUF FU(a)---------->a | |
781 | | | | | | | |
782 | | | | | | | |
783 UFUεF| |UεF FUεF| |εF FU(f)| |f | |
784 | | | | | | | |
785 v v v v v v | |
786 UFUF --------> UF FUF --------> F FU(b)---------> b | |
787 UεF εF ε(b) | |
788 | |
31 | 789 ----end-comment: |
0 | 790 |
791 \begin{tikzcd} | |
792 UFUFUF \arrow{r}{UεFUF} \arrow{d}[swap]{UFUεF} & UFUF \arrow{d}{UεF} & FUFUF \arrow{r}{εFUF} \arrow{d}[swap]{FUεF} & FUF \arrow{d}{εF} & FU(a) \arrow{r}{ε(a)} \arrow{d}[swap]{FU(f)} & a \arrow{d}[swap]{f} & \mbox{} \\ | |
793 UFUF \arrow{r}{UεF} & UF & FUF \arrow{r}[swap]{εF} & F & FU(b) \arrow{r}[swap]{ε(b)} & b & \mbox{} \\ | |
794 \end{tikzcd} | |
795 | |
796 association law | |
797 | |
798 \begin{eqnarray*} | |
799 μ ○ μ T & = & μ ○ T μ \\ | |
800 Uε(a)F ○ Uε(a)F FU & = & Uε(a)F ○ FU Uε(a)F \\ | |
801 \end{eqnarray*} | |
802 | |
803 $UεF○UεFFU=UεF○FUUεF$ | |
804 | |
805 naturality of $ε$ | |
806 | |
807 $ ε(b)FU(f)(a) = fε(a) $ | |
808 | |
809 $ a = FUF(a), b = F(a), f = εF $ | |
810 | |
811 \begin{eqnarray*} | |
812 ε(F(a))(FU(εF))(a) & = & (εF)(εFUF(a)) \\ | |
813 U(ε(F(a))(FU(εF))(a)) & = & U((εF)(εFUF(a))) \\ | |
814 U(ε(F(a))(FU(εF))(a)) & = & U((εF)(εFUF(a))) \\ | |
815 UεF○FUUεF & = UεF○UεFFU \\ | |
816 \end{eqnarray*} | |
817 | |
31 | 818 ----begin-comment: |
0 | 819 |
820 FU(ε(F(a))) | |
821 FUF(a) <-------------FUFUF(a) | |
822 | | | |
823 |ε(F(a)) |ε(FUF(a)) | |
824 | | | |
825 v v | |
826 F(a) <------------- FUF(a) | |
827 ε(F(a)) | |
828 | |
31 | 829 ----end-comment: |
0 | 830 |
831 \begin{tikzcd} | |
832 FUF(a) \arrow[leftarrow]{r}{FU(ε(F(a)))} \arrow{d}{ε(F(a))} & FUFUF(a) \arrow{d}{ε(FUF(a))} & \mbox{} \\ | |
833 F(a) \arrow[leftarrow]{r}[swap]{ε(F(a))} & FUF(a) & \mbox{} \\ | |
834 \end{tikzcd} | |
835 | |
836 --Eilenberg-Moore category | |
837 | |
838 $(T,η,μ)$ | |
839 | |
840 $A^T$ object $(A,φ)$ | |
841 | |
842 $ φη(A) = 1_A, φμ(A) = φT(φ) $ | |
843 | |
844 arrow $f$. | |
845 | |
846 $ φT(f) = fφ $ | |
847 | |
848 | |
31 | 849 ----begin-comment: |
0 | 850 |
851 η(a) μ(a) T(f) | |
852 a-----------> T(a) T^2(a)--------> T(a) T(a)---------->T(b) | |
853 | | | | | | |
854 | | | | | | |
855 |φ T(φ)| |φ φ| |φ' | |
856 | | | | | | |
857 v v v v v | |
858 _ a T(a)-------->T(a) a------------> b | |
859 φ f | |
860 | |
31 | 861 ----end-comment: |
0 | 862 |
863 \begin{tikzcd} | |
864 a \arrow{r}{η(a)} \arrow{rd}{1_a} & T(a) \arrow{d}{φ} & T^2(a) \arrow{r}{μ(a)} \arrow{d}[swap]{T(φ)} & T(a) \arrow{d}{φ} & T(a) \arrow{r}{T(f)} \arrow{d}[swap]{φ} & T(b) \arrow{d}{φ'} & \mbox{} \\ | |
865 \mbox{} & a & T(a) \arrow{r}[swap]{φ} & T(a) & a \arrow{r}[swap]{f} & b & \mbox{} \\ | |
866 \end{tikzcd} | |
867 | |
868 --EM on monoid | |
869 | |
870 $f: a-> b$ | |
871 | |
872 $T: a -> (m,a) $ | |
873 | |
874 $η: a -> (1,a) $ | |
875 | |
876 $μ: (m,(m',a)) -> (mm',a) $ | |
877 | |
878 $φ: (m,a) -> φ(m,a) = ma $ | |
879 | |
31 | 880 ----begin-comment: |
0 | 881 |
882 η(a) μ(a) T(f) | |
883 a----------->(1,a) (m,(m',a))-----> (mm',a) (m,a)----------->(m,f(a)) | |
884 | | | | | | |
885 | | | | | | |
886 |φ T(φ)| |φ φ| |φ' | |
887 | | | | | | |
888 v v v v v | |
889 _ 1a (m,m'a)-------->mm'a ma------------> mf(a)=f(ma) | |
890 φ f | |
31 | 891 ----end-comment: |
0 | 892 |
893 \begin{tikzcd} | |
894 a \arrow{r}{η(a)} \arrow{rd}{1_a} & (1,a) \arrow{d}{φ} & (m,(m',a)) \arrow{r}{μ(a)} \arrow{d}[swap]{T(φ)} & (mm',a) \arrow{d}{φ} & (m,a) \arrow{r}{T(f)} \arrow{d}[swap]{φ} & (m,f(a)) \arrow{d}{φ'} & \mbox{} \\ | |
895 \mbox{} & 1a & (m,m'a) \arrow{r}[swap]{φ} & mm'a & ma \arrow{r}[swap]{f} & mf(a)=f(ma) & \mbox{} \\ | |
896 \end{tikzcd} | |
897 | |
898 object $(a,φ)$. arrow $f$. | |
899 | |
900 $ φT(f)(m,a) = fφ(m,a) $ | |
901 | |
902 $ φ(m,f(a)) = f(a) $ | |
903 | |
904 $ U^T : A^T->A $ | |
905 | |
906 $ U^T(a,φ) = a, U^T(f) = f $ | |
907 | |
908 $ F^T : A->A^T$ | |
909 | |
910 $ F^T(a) = (T(a),μ(a)), F^T(f) = T(F) $ | |
911 | |
912 --Comparison Functor $K^T$ | |
913 | |
914 $ K^T(B) = (U(B),Uε(B))a, K^T(f) = U(g) $ | |
915 | |
916 $ U^T K^T (b) = U(b) $ | |
917 | |
918 $ U^TK^T(f) = U^TU(f) = U(f) $ | |
919 | |
920 $ K^TF(a) = (UF(a),Uε(F(a))) = (T(a), μ(a)) = F^T(a) $ | |
921 | |
922 $ K^TF(f) = UF(f) = T(f) = F^T(f) $ | |
923 | |
924 $ ηU(a,φ) = η(a), Uε(a,φ) = ε^TK^T(b) = Uε(b) $ | |
925 | |
31 | 926 ----begin-comment: |
0 | 927 |
928 | |
929 _ Ba _ | |
930 |^ | |
931 || | |
932 || | |
933 K_T F||U K^T | |
934 || | |
935 || | |
936 || | |
937 U_T v| F^T | |
938 A_T---------> A ---------> A^T | |
939 <--------- <-------- | |
940 F_T U^T | |
941 | |
31 | 942 ----end-comment: |
0 | 943 |
944 | |
945 \begin{tikzcd} | |
946 \mbox{} & B \arrow{r}{K^T} \arrow{rd}{F} \arrow[leftarrow]{rd}[swap]{U} & A^T \arrow{d}{U^T} & \mbox{} \\ | |
947 \mbox{} & A_T \arrow{r}[swap]{U_T} \arrow[leftarrow]{r}{F_T} \arrow{u}[swap]{K_T} & A \arrow{u}{F^T} & \mbox{} \\ | |
948 \\ | |
949 \mbox{} & B \arrow{d}{F} \arrow{rd}{K^T} & \mbox{} \\ | |
950 A_T \arrow{r}{U_T} \arrow{ru}[leftarrow]{K_T} & A \arrow{r}{F^T} \arrow{u}{U} & A^T & \mbox{} \\ | |
951 \end{tikzcd} | |
952 | |
953 --Kleisli Category | |
954 | |
955 Object of $A$. | |
956 | |
4 | 957 Arrow $f: a -> T(a)$ in $A$. In $A_T$, $f: b -> c, g: c -> d$, |
0 | 958 |
959 $ g * f = μ(d)T(g)f $ | |
960 | |
961 $η(b):b->T(b)$ is an identity. | |
962 | |
963 $ f * η(b) = μ(c)T(f)η(b) = μ(c)η(T(c))f = 1_T(c) f = f $ | |
964 | |
965 and | |
966 | |
967 $ η(c) * f = μ(c)Tη(c)f = 1_T(c) f = f $ | |
968 | |
969 association law $ g * (f * h) = (g * f) * h $, | |
970 | |
971 $h: a -> T(b), f: b -> T(c), g: c -> T(d) $, | |
972 | |
973 naturality of $μ$ | |
974 | |
31 | 975 ----begin-comment: |
0 | 976 |
977 μ(c) T(f) h | |
978 f*h _ _ T(c) <---------------- T^2(c) <------- T(b) <----------- a | |
979 | |
980 | |
981 μ(d) T(g) μ(c) T(f) h | |
982 g*(f*h) T(d)<--------T^2(d) <-------------- T(c) <---------------- T^2(c) <------- T(b) <----------- a | |
983 | |
984 | |
985 μ(d) μ(d)T T^2(g) T(f) h | |
986 (g*f)*h T(d)<--------T^2(d) <---------------T^3(d) <-------------- T^2(c) <------- T(b) <----------- a | |
987 | |
988 | |
989 μ(d) Tμ(d) T^2(g) T(f) h | |
990 (g*f)*h T(d)<--------T^2(d) <---------------T^3(d) <-------------- T^2(c) <------- T(b) <----------- a | |
991 | |
992 | |
993 μ(d) T(g) f | |
994 (g*f) _ T(d) <---------------T^2(d) <-------------- T(c) <----------- b _ | |
995 | |
996 | |
997 | |
998 | |
999 Tμ(d) T^2(g) | |
1000 T^2(d)<-----------T^2(T(d))<-------- T^2(c) | |
1001 | | | | |
1002 | | | | |
1003 μ(d)| |μ(T(d)) |μ(c) | |
1004 | | | | |
1005 v μ(d) v T(g) v | |
1006 T(d) <----------- T(T(d)) <---------- T(c) | |
1007 | |
1008 | |
1009 | |
31 | 1010 ----end-comment: |
0 | 1011 |
1012 \begin{tikzcd} | |
1013 f*h & \mbox{} & \mbox{} & T(c) \arrow[leftarrow]{r}{μ(c)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\ | |
1014 g*(f*h) & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{T(g)} & T(c) \arrow[leftarrow]{r}{μ(c)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\ | |
1015 (g*f)*h & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{μ(d)T} & T^3(d) \arrow[leftarrow]{r}{T^2(g)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\ | |
1016 (g*f)*h & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{Tμ(d)} & T^3(d) \arrow[leftarrow]{r}{T^2(g)} & T^2(c) \arrow[leftarrow]{r}{T(f)} & T(b) \arrow[leftarrow]{r}{h} & a & \mbox{} \\ | |
1017 g*f & T(d) \arrow[leftarrow]{r}{μ(d)} & T^2(d) \arrow[leftarrow]{r}{T(g)} & T(c) \arrow[leftarrow]{r}{f} & b & \mbox{} \\ | |
1018 \mbox{} & T^2(d) \arrow[leftarrow]{r}{Tμ(d)} \arrow{d}[swap]{μ(d)} & T^2(T(d)) \arrow[leftarrow]{r}{T^2(g)} \arrow{d}{μ(T(d))} & T^2(c) \arrow{d}{μ(c)}& \mbox{} \\ | |
1019 \mbox{} & T(d) \arrow[leftarrow]{r}{μ(d)} & T(T(d)) \arrow[leftarrow]{r}{T(g)} & T(c) & \mbox{} \\ | |
1020 \end{tikzcd} | |
1021 | |
1022 | |
1023 \begin{eqnarray*} | |
1024 g * (f * h) & = & g * (μ(c)T(f)h) \\ | |
1025 \mbox{} & = & μ(d)(T(g))(μ(c)T(f)h) \\ | |
1026 \mbox{} & = & μ(d) T(g)μ(c) T(f)h \\ | |
1027 \\ | |
1028 (g * f) * h & = & (μ(d)T(g)f) * h \\ | |
1029 \mbox{} & = & μ(d)T(μ(d)T(g)f)h \\ | |
1030 \mbox{} & = & μ(d) T(μ(d))T^2(g) T(f)h \\ | |
1031 \end{eqnarray*} | |
1032 | |
1033 $ μ(d)μ(d)T = μ(d)Tμ(d) $ | |
1034 | |
1035 $ μ(T(d))T^2(g) = T(g)μ(c) $ naturality of $μ$. | |
1036 | |
1037 $ μ(d)Tμ(d)T^2(g) = μ(d)μ(T(d))T^2(g) = μ(d)T(g)μ(c) $ | |
1038 | |
31 | 1039 ----begin-comment: |
0 | 1040 |
1041 T^2(g) | |
1042 T^3(d) <----------- T^2(c) | |
1043 | | | |
1044 |μ(T(d)) |μ(c) | |
1045 | | | |
1046 v v | |
1047 T^2(d)<------------ T(c) | |
1048 T(g) | |
1049 | |
31 | 1050 ----end-comment: |
0 | 1051 |
1052 \begin{tikzcd} | |
1053 T^3(d) \arrow[leftarrow]{r}{T^2(g)} \arrow{d}{μ(T(d))} & T^2(c) & \mbox{} \\ | |
1054 T^2(d) \arrow[leftarrow]{r}[swap]{T(g)} & T(c) \arrow{u}{μ(c)} & \mbox{} \\ | |
1055 \end{tikzcd} | |
1056 | |
1057 $ μ(T(d)) = Tμ(d) ? $ | |
1058 | |
1059 $ (m,(m'm'',a)) = (mm',(m'',a))$ No, but | |
1060 | |
1061 $ μμ(T(d)) = μTμ(d) $. | |
1062 | |
1063 | |
1064 --Ok | |
1065 | |
1066 $ T(g)μ(c) = T(μ(d))T^2(g) $ であれば良いが。 | |
1067 | |
1068 $ μ(d)T^2(g) = T(g)μ(c) $ | |
1069 | |
1070 ちょっと違う。 $ μ(d) T(μ(d))T^2(g) $ が、 | |
1071 | |
1072 $ μ(d) μ(d)T^2(g) $ | |
1073 | |
1074 となると良いが。 | |
1075 | |
1076 $ μ(d)T(μ(d)) = μ(d)μ(T(d)) $ | |
1077 | |
1078 | |
1079 --monoid in Kleisli category | |
1080 | |
1081 $ T : a -> (m,a) $ | |
1082 | |
1083 $ T : f -> ((m,a)->(m,f(a))) $ | |
1084 | |
1085 $ μ(a) : (m,(m',a)) -> (mm',a) $ | |
1086 | |
1087 $ f: a -> (m,f(a)) $ | |
1088 | |
1089 \begin{eqnarray*} | |
4 | 1090 g * f (b) & = & μ(d)T(g)f(b) = μ(d)T(g)(m,f(b)) \\ & = & μ(m,(m',gf(b))) = (mm',gf(b)) \\ |
1091 (g * f) * h(a) & = & μ(d)T(μ(d)T(g)f)h(a) = μ(d)T(μ(d))(TT(g))T(f)(m,h(a)) \\ | |
1092 \mbox{} & = & μ(d)T(μ(d))(TT(g))(m,(m',fh(a))) \\ & = & μ(d)T(μ(d)(m,(m',(m'',gfh(a)))) = (mm'm'',gfh(a)) \\ | |
1093 g * (f * h)(a) & = & (μ(d)(T(g)))μ(c)T(f)h(a) = (μ(d)(T(g)))μ(c)T(f)(m,h(a)) \\ | |
1094 \mbox{} & = & (μ(d)(T(g)))μ(c)(m,(m',fh(a))) \\ & = & μ(d)T(g)(mm',fh(a)) = (mm'm'',gfh(a)) \\ | |
0 | 1095 \end{eqnarray*} |
1096 | |
1097 | |
1098 --Resolution of Kleiseli category | |
1099 | |
1100 $f : a-> b, g: b->c $ | |
1101 | |
1102 $ U_T : A_T -> A $ | |
1103 | |
1104 $ U_T(a) = T(a) $ | |
1105 | |
1106 $ U_T(f) = μ(b)T(f) $ | |
1107 | |
1108 $ g * f = μ(d)T(g)f $ | |
1109 | |
1110 \begin{eqnarray*} | |
1111 U_T(g*f) & = & U_T(μ(c)T(g)f) \\ & = & μ(c) T(μ(c)T(g)f) \\ & = & μ(c) μ(c)T(T(g)f)) = μ(c)μ(c) TT(g) T(f) \mbox{ association law} \\ | |
1112 U_T(g)U_T(f) & = & μ(c)T(g)μ(b)T(f) = μ(c) μ(c) TT(g) T(f) \\ | |
1113 T(g)μ(b) & = & μ(c)TT(g) \\ | |
1114 \end{eqnarray*} | |
1115 | |
1116 | |
1117 | |
31 | 1118 ----begin-comment: |
0 | 1119 |
1120 TT(g) | |
1121 TT <--------------TT | |
1122 | | | |
1123 |μ(c) |μ(b) | |
1124 | | | |
1125 v T(g) v | |
1126 T<---------------T | |
1127 | |
31 | 1128 ----end-comment: |
0 | 1129 |
1130 \begin{tikzcd} | |
1131 TT \arrow[leftarrow]{r}{TT(g)} \arrow{d}{μ(c)} & TT \arrow{d}{μ(b)} & \mbox{} \\ | |
1132 T \arrow[leftarrow]{r}{T(g)} & T & \mbox{} \\ | |
1133 \end{tikzcd} | |
1134 | |
1135 | |
1136 $ F_T : A -> A_T $ | |
1137 | |
1138 $ F_T(a) = a $ | |
1139 | |
1140 $ F_T(f) = η(b) f $ | |
1141 | |
1142 $ F_T(1_a) = η(a) = 1_{F_T(a)} $ | |
1143 | |
1144 \begin{eqnarray*} | |
1145 F_T(g)*F_T(f) & = & μ(c)T(F_T(g))F_T(f) \\& = & μ(c)T(η(c)g)η(b)f \\ & = & μ(c)T(η(c))T(g)η(b)f \\& = & T(g)η(b) f \mbox{ unity law} \\ | |
1146 \mbox{} & = & η(c)gf = F_T(gf) | |
1147 \end{eqnarray*} | |
1148 | |
1149 $ η(c)g = T(g)η(b) $ | |
1150 | |
31 | 1151 ----begin-comment: |
0 | 1152 |
1153 g | |
1154 c<---------------b | |
1155 | | | |
1156 |η(c) |η(b) | |
1157 | | | |
1158 v T(g) v | |
1159 T(b)<-------------T(b) | |
1160 | |
31 | 1161 ----end-comment: |
0 | 1162 |
1163 \begin{tikzcd} | |
1164 c \arrow[leftarrow]{r}{g} \arrow{d}{η(c)} & b \arrow{d}{η(b)} & \mbox{} \\ | |
1165 T \arrow[leftarrow]{r}{T(g)} & T & \mbox{} \\ | |
1166 \end{tikzcd} | |
1167 | |
1168 | |
1169 $ μ○Tη = 1_T = μ○ηT $ Unity law | |
1170 | |
1171 \begin{eqnarray*} | |
1172 \mbox{} ε_T(a) & = & 1_{T(a)} \\ | |
1173 \mbox{}\\ | |
1174 \mbox{}\\ | |
1175 \mbox{} U_T ε_T F_T & = & μ \\ | |
1176 \mbox{}\\ | |
1177 \mbox{} U_T ε_T F_Ta(a) & = & U_T ε_T (a) = U_T(1_{T(a)} = μ(a) \\ | |
1178 \mbox{}\\ | |
1179 \mbox{} ε_T(F_T(a))*F_T(η(a)) & = & ε_T(a) * F_T(η(a)) \\ & = & 1_{T(a)} * (F_T(η(a))) \\ & = & 1_{T(a)} * (η(T(a))η(a))) \\ | |
1180 \mbox{} & = & μ(T(a)) T (1_{T(a)} ) (η(T(a))η(a))) \\ & = & μ(T(a))η(T(a))η(a) \\ | |
1181 \mbox{} & = & η(a) = 1_{F_T} \\ | |
1182 \end{eqnarray*} | |
1183 | |
1184 | |
1185 | |
1186 \begin{eqnarray*} | |
1187 U_T(ε_T(a))η(U_T(a)) & = & U_T(1_{T(a)} η( T(a)) ) \\ & = & μ(T(a))T(1_{T(a)}) η(T(a)) \\ & = & μ(T(a)) η(T(a)) 1_{T(a)} \\ | |
1188 & = & 1_{T(a)} = T(1_a) = 1_{U_T} \\ | |
1189 \end{eqnarray*} | |
1190 | |
1191 | |
1192 | |
1193 ---Comparison functor $K_T$ | |
1194 | |
1195 Adjoint $(B,U,F,ε)$, $K_T : A_T -> B $, | |
1196 | |
1197 $ g : b -> c$. | |
1198 | |
1199 | |
1200 \begin{eqnarray*} | |
1201 K_T(a) & = & F(a) \\ | |
1202 K_T(g) & = & ε(F(c)) F(g) \\ | |
1203 K_T F_T(a) & = & K_T(a) = F(a) \\ | |
1204 K_T F_T(f) & = & K_T(η(b) f) \\& = & ε(F(b))F(μ(b)f) \\ & = & ε(F(b))F(μ(b))F(f) = F(f) \\ | |
1205 \end{eqnarray*} | |
1206 | |
1207 | |
1208 \begin{eqnarray*} | |
1209 K_T (η(b)) & = & ε(F(b))F(η(b)) = 1_{F(b)} \\ | |
1210 K_T (η(T(c))g) & = & ε(F(T(c)))F(η(T(c))g) = F(g) \\ | |
1211 K_T (g) K_T(f) & = & ε(F(c))F(g) ε(F(b))F(f) = ε(F(c)) ε(F(c)) FUF(g) F(f) \\ | |
1212 K_T (g*f) & = & ε(F(c)) F(μ(c)UF(g)f) = ε(F(c)) F(μ(c)) FUF(g) F(f) \\ | |
1213 ε(F(c))FUF(g) & = & F(g) ε(F(b)) \\ | |
1214 \end{eqnarray*} | |
1215 | |
31 | 1216 ----begin-comment: |
0 | 1217 |
1218 FU(F(g)) | |
1219 FU(F(c))<-------------FU(F(b)) | |
1220 | | | |
1221 |ε(F(c)) |ε(F(b)) | |
1222 | | | |
1223 v F(g) v | |
1224 F(c)<----------------F(b) | |
1225 | |
31 | 1226 ----end-comment: |
0 | 1227 |
1228 \begin{tikzcd} | |
1229 FU(F(c)) \arrow[leftarrow]{r}{FU(F(g))} \arrow{d}{ε(F(c))} & FU(F(b)) \arrow{d}{ε(F(b))} & \mbox{} \\ | |
1230 F(c) \arrow[leftarrow]{r}{F(g)} & F(b) & \mbox{} \\ | |
1231 \end{tikzcd} | |
1232 | |
1233 $ ε(F(c)) F(μ(c)) = ε(F(c)) ε(F(c)) $ ? | |
1234 | |
1235 $ ε(F(c)) F(μ(c)) = ε(F(c)) FUε(F(c)) $ | |
1236 | |
31 | 1237 ----begin-comment: |
0 | 1238 |
1239 FUε(F(c)) | |
1240 FUFU(c)<---------------FUFU(F(c)) | |
1241 | | | |
1242 |εF(c)) |ε(F(c)) | |
1243 | | | |
1244 v ε(F(c)) v | |
1245 FU(c)<----------------FU(F(c)) | |
1246 | |
1247 | |
31 | 1248 ----end-comment: |
0 | 1249 |
1250 \begin{tikzcd} | |
1251 FUFU(c) \arrow[leftarrow]{r}{FUε(F(c))} \arrow{d}{εF(c))} & FUFU(F(c)) \arrow{d}{ε(F(c))} & \mbox{} \\ | |
1252 FU(c) \arrow[leftarrow]{r}{ε(F(c))} & FU(F(c)) & \mbox{} \\ | |
1253 \end{tikzcd} | |
1254 | |
1255 | |
1256 | |
1257 $ UK_T(a) = UF(a) = T(a) = U_T(a) $ | |
1258 | |
1259 $ UK_T(g) = U(ε((F(c))F(g))) = U(ε(F(c)))UF(g) = μ(c)T(g) = U_T(g) $ | |
1260 | |
1261 | |
1262 | |
1263 | |
1264 | |
1265 | |
1266 --Monoid | |
1267 | |
1268 | |
1269 $T : A -> M x A$ | |
1270 | |
1271 $T(a) = (m,a)$ | |
1272 | |
1273 $T(f) : T(A) -> T(f(A))$ | |
1274 | |
1275 $T(f)(m,a) = (m,f(a))$ | |
1276 | |
1277 $T(fg)(m,a) = (m,fg(a)) $ | |
1278 | |
1279 -- association of Functor | |
1280 | |
1281 $T(f)T(g)(m,a) = T(f)(m,g(a)) = (m,fg(a)) = T(fg)(m,a)$ | |
1282 | |
1283 | |
1284 $μ : T x T -> T$ | |
1285 | |
1286 $μ_a(T(T(a)) = μ_A((m,(m',a))) = (m*m',a) $ | |
1287 | |
1288 -- $TT$ | |
1289 | |
1290 $TT(a) = (m,(m',a))$ | |
1291 | |
1292 $TT(f)(m,(m',a)) = (m,(m',f(a))$ | |
1293 | |
1294 | |
1295 | |
1296 -- naturality of $μ$ | |
1297 | |
31 | 1298 ----begin-comment: |
4 | 1299 μ(a) |
0 | 1300 TT(a) ---------> T(a) |
1301 | | | |
1302 TT(f)| |T(f) | |
1303 | | | |
4 | 1304 v μ(b) v |
0 | 1305 TT(b) ---------> T(b) |
31 | 1306 ----end-comment: |
0 | 1307 |
1308 \begin{tikzcd} | |
4 | 1309 TT(a) \arrow{r}{μ(a)} \arrow{d}{TT(f)} & T(a) \arrow{d}{T(f)} \\ |
1310 TT(b) \arrow{r}{μ(b)} & T(b) | |
0 | 1311 \end{tikzcd} |
1312 | |
1313 | |
4 | 1314 $ μ(b)TT(f)TT(a) = T(f)μ(a)TT(a)$ |
0 | 1315 |
4 | 1316 $ μ(b)TT(f)TT(a) = μ(b)((m,(m',f(a))) = (m*m',f(a))$ |
0 | 1317 |
4 | 1318 $ T(f)μ(a)(TT(a)) = T(f)(m*m',a) = (m*m',f(a))$ |
0 | 1319 |
1320 --μ○μ | |
1321 | |
1322 Horizontal composition of $μ$ | |
1323 | |
1324 $f -> μ_TT(a)$ | |
1325 | |
1326 $a -> TT(a)$ | |
1327 | |
1328 $μ_T(a) TTT(a) = μ_T(a) (m,(m',(m'',a))) = (m*m',(m'',a)) $ | |
1329 | |
31 | 1330 ----begin-comment: |
4 | 1331 μ(TTT(a)) |
1332 TTTT(a) ----------> TTT(a) | |
1333 | | | |
1334 TT(μ(T(a))| |T(μ(T(a))) | |
1335 | | | |
1336 v μ(TT(a)) v | |
1337 TTT(a) -----------> TT(a) | |
31 | 1338 ----end-comment: |
0 | 1339 |
1340 \begin{tikzcd} | |
4 | 1341 TTTT(a) \arrow{r}{μ(TTT(a))} \arrow{d}[swap]{TT(μ)} & TTT(a) \arrow{d}{T(μ)} & \mbox{} \\ |
1342 TTT(a) \arrow{r}{μ(TT(a))} & TT(a) & \mbox{} \\ | |
0 | 1343 \end{tikzcd} |
1344 | |
1345 | |
1346 \begin{eqnarray*} | |
1347 T(μ_a)μ_aTTTT(a) & = & T(μ_a)μ_a(m_0,(m_1,(m_2,(m_3,a))))) \\& = & T(μ_a)(m_0*m_1,(m_2,(m_3,a))) = (m_0*m_1,(m_2*m_3,a)) \\ | |
1348 μ_bTT(μ_a)TTTT(a) & = & μ_bTT(μ_a)(m_0,(m_1,(m_2,(m_3,a))))) \\& = & μ_b (m_0,(m_1,(m_2*m_3,a))) = (m_0*m_1,(m_2*m_3,a)) \\ | |
1349 \end{eqnarray*} | |
1350 | |
1351 -Horizontal composition of natural transformation | |
1352 | |
1353 | |
1354 --Natural transformation $ε$ and Functor $F: A->B, U:B->A$ | |
1355 | |
1356 | |
1357 $ ε: FUFU->FU$ | |
1358 | |
1359 $ ε: FU->1_B$ | |
1360 | |
1361 Naturality of $ε$ | |
1362 | |
31 | 1363 ----begin-comment: |
0 | 1364 ε(a) |
1365 FU(a) ------> a | |
1366 FU(f)| |f | |
1367 v ε(b) v | |
1368 FU(b) ------> b ε(b)FU(f)a = fε(a)a | |
1369 | |
1370 ε(FU(a)) | |
1371 FUFU(a) -----------> FU(a) | |
1372 FUFU(f)| |FU(f) | |
1373 v ε(FU(b)) v | |
1374 FUFU(b) -----------> FU(b) | |
1375 | |
1376 ε((FU(b))FUFU(f)FU(a) = FU(f)ε(FU(a))FU(a) | |
31 | 1377 ----end-comment: |
0 | 1378 |
1379 \begin{tikzcd} | |
1380 FU(a) \arrow{r}{ε(a)} \arrow{d}{FU(f)} & a \arrow{d}{f} \\ | |
1381 FU(b) \arrow{r}{ε(b)} & b & ε(b)FU(f)a = fε(a)a \\ | |
1382 FUFU(a) \arrow{r}{ε(FU(a))} \arrow{d}{FUFU(f)}& FU(a) \arrow{d}{FU(f)} \\ | |
1383 FUFU(b) \arrow{r}{ε(FU(b))} & FU(b) \\ | |
1384 & & ε((FU(b))FUFU(f)FU(a) = FU(f)ε(FU(a))FU(a) \\ | |
1385 \end{tikzcd} | |
1386 | |
1387 | |
128
276f33602700
Comparison Functor all done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
65
diff
changeset
|
1388 --Vertcial Compositon $ε・ε$ |
0 | 1389 |
1390 $ ε・ε : FUFU -> 1B$ | |
1391 | |
31 | 1392 ----begin-comment: |
0 | 1393 ε(FU(a)) ε(a) |
1394 FUFU(a) ---------> FU(a) ------> a | |
1395 FUFU(f)| |FU(f) |f | |
1396 v ε(FU(b)) v ε(b) v | |
1397 FUFU(b) ---------> FU(b) ------> b | |
31 | 1398 ----end-comment: |
0 | 1399 |
1400 \begin{tikzcd} | |
1401 FUFU(a) \arrow{r}{ε(FU(a))} \arrow{d}{FUFU(f)} & FU(a) \arrow{r}{ε(a)}\arrow{d}{FU(f)} & a\arrow{d}{f} \\ | |
1402 FUFU(b) \arrow{r}{ε(FU(b))} & FU(b) \arrow{r}{ε(b)} & b | |
1403 \end{tikzcd} | |
1404 | |
1405 | |
1406 --Horizontal Composition $ε○ε$ | |
1407 | |
31 | 1408 ----begin-comment: |
0 | 1409 FUFU <----- FU <------ B |
1410 FU FU | |
1411 | | | |
1412 |ε |ε | |
1413 v v | |
1414 1_B 1_B | |
1415 B <----- B <------ B | |
31 | 1416 ----end-comment: |
0 | 1417 |
1418 \begin{tikzcd} | |
1419 FUFU \arrow[leftarrow]{rr} & & FU \arrow[leftarrow]{rr} & & B \\ | |
1420 & FU \arrow{d}{ε} & & FU \arrow{d}{ε}& & \\ | |
1421 & 1_B & & 1_B & & \\ | |
1422 B \arrow[leftarrow]{rr} & & B \arrow[leftarrow]{rr} & & B \\ | |
1423 \end{tikzcd} | |
1424 | |
1425 cf. $FUFU, FU$ has objects of $B$. | |
1426 | |
1427 $ ε○ε : FUFU -> 1_B 1_B$ | |
1428 | |
31 | 1429 ----begin-comment: |
0 | 1430 εFU(b) |
1431 FUFU(b) ------------> 1_AFU(b) | |
1432 | | | |
1433 |FUε(b) |1_aε(b) | |
1434 | | | |
1435 v ε(b) v | |
1436 FU1_B(b) ------------> 1_B1_B(b) | |
1437 | |
31 | 1438 ----end-comment: |
0 | 1439 |
1440 \begin{tikzcd} | |
1441 FUFU(b) \arrow{r}{εFU(b)} \arrow{d}{FUε(b)} & 1_A \arrow{d}{1_aε(b)} & \mbox{} \\ | |
1442 FU1_B(b) \arrow{r}{ε(b)} & 1_B & \mbox{} \\ | |
1443 \end{tikzcd} | |
1444 | |
1445 that is | |
1446 | |
31 | 1447 ----begin-comment: |
0 | 1448 εFU(b) |
1449 FUFU(b) ------------> FU(b) | |
1450 | | | |
1451 |FUε(b) |ε(b) | |
1452 | | | |
1453 v ε(b) v | |
1454 FU(b) ------------> b | |
31 | 1455 ----end-comment: |
0 | 1456 |
1457 \begin{tikzcd} | |
1458 FUFU(b) \arrow{r}{εFU(b)} \arrow{d}{FUε(b)} & FU(b) \arrow{d}{ε(b)} & \mbox{} \\ | |
1459 FU(b) \arrow{r}{ε(b)} & b & \mbox{} \\ | |
1460 \end{tikzcd} | |
1461 | |
1462 | |
1463 $ε(b) : b -> ε(b)$ arrow of $B$ | |
1464 | |
1465 $ ε: FU -> 1_B$ | |
1466 | |
1467 $ ε(b) : FU(b) -> b$ | |
1468 | |
31 | 1469 ----begin-comment: |
0 | 1470 U F ε(b) |
1471 b ----> U(b) ----> FU(b) -------> b | |
31 | 1472 ----end-comment: |
0 | 1473 |
1474 \begin{tikzcd} | |
1475 b \arrow{r}{U} & U(b) \arrow{r}{F} & FU(b) \arrow{r}{ε(b)} & b & \mbox{} \\ | |
1476 \end{tikzcd} | |
1477 | |
1478 replace $f$ by $ε(b)$, $a$ by $FU(b)$ in naturality $ε(b)FU(f)a = fε(a)a$ | |
1479 | |
1480 $ ε(b)FU(ε(b))FU(b) = εε(FU(b))FU(b)$ | |
1481 | |
1482 remove $FU(b)$ on right, | |
1483 | |
1484 $ ε(b)FU(ε(b)) = ε(b)ε(FU(b))$ | |
1485 | |
1486 this shows commutativity of previous diagram | |
1487 | |
1488 $ ε(b)ε(FU(b)) = ε(b)FU(ε(b))$ | |
1489 | |
1490 that is | |
1491 | |
1492 $ εεFU = εFUε$ | |
1493 | |
1494 | |
1495 | |
1496 --Yoneda Functor | |
1497 | |
1498 | |
1499 $ Y: A -> Sets^{A^{op}} $ | |
1500 | |
1501 $ Hom_A : A^{op} \times A -> Sets $ | |
1502 | |
1503 $ g:a'->a, h:b->b' $ | |
1504 | |
1505 $ Hom_A((g,h)) : Home_A(a,b) -> \{hfg | f \in Home_A(a,b) \} $ | |
1506 | |
1507 $ Hom_A((g,h)○(g',h') : Home_A(a,b) -> \{hh'fgg' | f \in Home_A(a,b) \} $ | |
1508 | |
1509 $ Hom_A((g,h)) Hom_A((g',h')) : Home_A(a,b) -> \{h'fg' | f \in Home_A(a,b) \} -> \{hh'fgg' | f \in Home_A(a,b) \} $ | |
1510 | |
31 | 1511 ----begin-comment: |
0 | 1512 |
1513 g' g | |
1514 a -----> a' -----> a'' | |
1515 | | | |
1516 | |f | |
1517 h' v h v | |
1518 b<-------b' <----- b'' | |
1519 | |
31 | 1520 ----end-comment: |
0 | 1521 |
1522 \begin{tikzcd} | |
1523 a \arrow{r}{g'} & a' \arrow{r}{g} \arrow{d}{} & a'' \arrow{d}{f} & \mbox{} \\ | |
1524 b \arrow[leftarrow]{r}{h'} & b' \arrow[leftarrow]{r}{h} & b'' & \mbox{} \\ | |
1525 \end{tikzcd} | |
1526 | |
1527 $ Hom^*_A : A^{op} -> Sets^{A} $ | |
1528 | |
1529 $ f^{op}: a->c ( f : c->a ) $ | |
1530 | |
1531 $ g^{op}: c->d ( g : d->c ) $ | |
1532 | |
1533 $ Home^*_A(a) : a -> λ b . Hom_A(a,b) $ | |
1534 | |
1535 $ Home^*_A(f^{op}) : (a -> λ b . Hom_A(a,b)) -> (c -> λ b . Hom_A(f(c),b)) $ | |
1536 | |
1537 $ Home^*_A(g^{op}f^{op}) : (a -> λ b . Hom_A(a,b)) -> (d -> λ b . Hom_A(fg(d),b)) $ | |
1538 | |
1539 $ Home^*_A(g^{op}) Home^*_A(f^{op}) : (a -> λ b . Hom_A(a,b)) -> (c -> λ b . Hom_A(f(c),b)) -> (d -> λ b . Hom_A(fg(d),b)) $ | |
1540 | |
1541 | |
1542 $ Hom^*_{A^{op}} : A -> Sets^{A^{op}} $ | |
1543 | |
1544 $ f : c->b $ | |
1545 $ g : d->c $ | |
1546 | |
1547 $ Home^*_{A^{op}}(b) : b -> λ a . Hom_{A^{op}}(a,b) $ | |
1548 | |
1549 $ Home^*_{A^{op}}(f) : (b -> λ a . Hom_{A^{op}}(a,b)) -> (c -> λ a . Hom_{A^{op}}(a,f(c))) $ | |
1550 | |
1551 $ Home^*_{A^{op}}(gf) : (b -> λ a . Hom_{A^{op}}(a,b)) -> (d -> λ a . Hom_{A^{op}}(a,gf(d))) $ | |
1552 | |
1553 $ Home^*_{A^{op}}(g) Home^*_{A^{op}}(f) : (b -> λ a . Hom_{A^{op}}(a,b)) -> (c -> λ a . Hom_{A^{op}}(a,f(c))) -> (d -> λ a . Hom_{A^{op}}(a,gf(d))) $ | |
1554 | |
1555 | |
1556 Arrows in $ Set^{A^{op}} $? | |
1557 | |
1558 $ f: b->c = (b -> λ a . Hom_{A^{op}}(a,b)) -> (c -> λ a . Hom_{A^{op}}(a,f(c))) $ | |
1559 | |
1560 $ Set^{A^{op}} : A^{op} -> Set $ | |
1561 | |
1562 an object $ b = λ a . Hom_{A^{op}}(a,b) $ is a functor from $A^{op}$ to $ Set $. | |
1563 | |
1564 $ t: (λ a . Hom_{A^{op}}(a,b)) -> (λ a . Hom_{A^{op}}(a,t(c))) $ should be a natural transformatin. | |
1565 | |
1566 $ f^{op}: (b : A^{op}) -> (c : A^{op} ) = f : c->b $ | |
1567 | |
1568 | |
31 | 1569 ----begin-comment: |
0 | 1570 |
1571 t(c) | |
1572 Hom_{A^{op}}(a,c) ------------------------->Hom_{A^{op}}(a,t(c)) | |
1573 | ^ | |
1574 | | | |
1575 |Home^*{A^{op}}(a,f) |Home^*{A^{op}}(a,f) | |
1576 | | | |
1577 v t(b) | | |
1578 Hom_{A^{op}}(a,b) ------------------------->Hom_{A^{op}}(a,t(b)) | |
1579 | |
1580 | |
1581 | |
31 | 1582 ----end-comment: |
0 | 1583 |
1584 \begin{tikzcd} | |
1585 Hom_{A^{op}}(a,c) \arrow{r}{t(c)} \arrow{d}{Home^*{A^{op}}(a,f)} & Hom_{A^{op}}(a,t(c)) & \mbox{} \\ | |
1586 Hom_{A^{op}}(a,b) \arrow{r}{t(b)} & Hom_{A^{op}}(a,t(b)) \arrow{u}[swap]{Home^*{A^{op}}(a,f)} & \mbox{} \\ | |
1587 \end{tikzcd} | |
1588 | |
1589 | |
1590 ---Contravariant functor | |
1591 | |
1592 $ h_a = Hom_A(-,a) $ | |
1593 | |
1594 $ f:b->c, Hom_A(f,1_a): Hom_A(c,a) -> Hom_A(b,a) $ | |
1595 | |
1596 | |
1597 | |
1598 | |
1599 | |
1600 | |
1601 | |
1602 |