Mercurial > hg > Members > kono > Proof > category
annotate cat-utility.agda @ 264:78ce12f8e6b6
pullback done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 20 Sep 2013 21:21:48 +0900 |
parents | a87d3ea9efe4 |
children | 367e8fde93ee |
rev | line source |
---|---|
56 | 1 module cat-utility where |
2 | |
3 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> | |
4 | |
87 | 5 open import Category -- https://github.com/konn/category-agda |
6 open import Level | |
7 --open import Category.HomReasoning | |
8 open import HomReasoning | |
56 | 9 |
87 | 10 open Functor |
56 | 11 |
87 | 12 id1 : ∀{c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (a : Obj A ) → Hom A a a |
13 id1 A a = (Id {_} {_} {_} {A} a) | |
253 | 14 -- We cannot make A implicit |
56 | 15 |
87 | 16 record IsUniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
17 ( U : Functor B A ) | |
18 ( F : Obj A → Obj B ) | |
19 ( η : (a : Obj A) → Hom A a ( FObj U (F a) ) ) | |
20 ( _* : { a : Obj A}{ b : Obj B} → ( Hom A a (FObj U b) ) → Hom B (F a ) b ) | |
21 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
22 field | |
101 | 23 universalMapping : {a : Obj A} { b : Obj B } → { f : Hom A a (FObj U b) } → |
24 A [ A [ FMap U ( f * ) o η a ] ≈ f ] | |
25 uniquness : {a : Obj A} { b : Obj B } → { f : Hom A a (FObj U b) } → { g : Hom B (F a) b } → | |
26 A [ A [ FMap U g o η a ] ≈ f ] → B [ f * ≈ g ] | |
56 | 27 |
87 | 28 record UniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
29 ( U : Functor B A ) | |
30 ( F : Obj A → Obj B ) | |
31 ( η : (a : Obj A) → Hom A a ( FObj U (F a) ) ) | |
32 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
33 infixr 11 _* | |
34 field | |
35 _* : { a : Obj A}{ b : Obj B} → ( Hom A a (FObj U b) ) → Hom B (F a ) b | |
36 isUniversalMapping : IsUniversalMapping A B U F η _* | |
56 | 37 |
87 | 38 open NTrans |
39 open import Category.Cat | |
40 record IsAdjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') | |
41 ( U : Functor B A ) | |
42 ( F : Functor A B ) | |
43 ( η : NTrans A A identityFunctor ( U ○ F ) ) | |
44 ( ε : NTrans B B ( F ○ U ) identityFunctor ) | |
45 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
46 field | |
47 adjoint1 : { b : Obj B } → | |
48 A [ A [ ( FMap U ( TMap ε b )) o ( TMap η ( FObj U b )) ] ≈ id1 A (FObj U b) ] | |
49 adjoint2 : {a : Obj A} → | |
50 B [ B [ ( TMap ε ( FObj F a )) o ( FMap F ( TMap η a )) ] ≈ id1 B (FObj F a) ] | |
56 | 51 |
87 | 52 record Adjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') |
53 ( U : Functor B A ) | |
54 ( F : Functor A B ) | |
55 ( η : NTrans A A identityFunctor ( U ○ F ) ) | |
56 ( ε : NTrans B B ( F ○ U ) identityFunctor ) | |
57 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
58 field | |
59 isAdjunction : IsAdjunction A B U F η ε | |
202
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
60 U-functor = U |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
61 F-functor = F |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
62 Eta = η |
58ee98bbb333
remove an extensionality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
176
diff
changeset
|
63 Epsiron = ε |
56 | 64 |
65 | |
87 | 66 record IsMonad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) |
67 ( T : Functor A A ) | |
68 ( η : NTrans A A identityFunctor T ) | |
69 ( μ : NTrans A A (T ○ T) T) | |
70 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | |
71 field | |
72 assoc : {a : Obj A} → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] | |
73 unity1 : {a : Obj A} → A [ A [ TMap μ a o TMap η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] | |
74 unity2 : {a : Obj A} → A [ A [ TMap μ a o (FMap T (TMap η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ] | |
56 | 75 |
87 | 76 record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NTrans A A identityFunctor T) (μ : NTrans A A (T ○ T) T) |
77 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | |
78 field | |
79 isMonad : IsMonad A T η μ | |
130 | 80 -- g ○ f = μ(c) T(g) f |
81 join : { a b : Obj A } → { c : Obj A } → | |
82 ( Hom A b ( FObj T c )) → ( Hom A a ( FObj T b)) → Hom A a ( FObj T c ) | |
83 join {_} {_} {c} g f = A [ TMap μ c o A [ FMap T g o f ] ] | |
84 | |
56 | 85 |
87 | 86 Functor*Nat : {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'') |
87 (F : Functor B C) -> { G H : Functor A B } -> ( n : NTrans A B G H ) -> NTrans A C (F ○ G) (F ○ H) | |
88 Functor*Nat A {B} C F {G} {H} n = record { | |
89 TMap = \a -> FMap F (TMap n a) | |
90 ; isNTrans = record { | |
130 | 91 commute = commute |
87 | 92 } |
93 } where | |
130 | 94 commute : {a b : Obj A} {f : Hom A a b} |
87 | 95 → C [ C [ (FMap F ( FMap H f )) o ( FMap F (TMap n a)) ] ≈ C [ (FMap F (TMap n b )) o (FMap F (FMap G f)) ] ] |
130 | 96 commute {a} {b} {f} = let open ≈-Reasoning (C) in |
87 | 97 begin |
98 (FMap F ( FMap H f )) o ( FMap F (TMap n a)) | |
99 ≈⟨ sym (distr F) ⟩ | |
100 FMap F ( B [ (FMap H f) o TMap n a ]) | |
101 ≈⟨ IsFunctor.≈-cong (isFunctor F) ( nat n ) ⟩ | |
102 FMap F ( B [ (TMap n b ) o FMap G f ] ) | |
103 ≈⟨ distr F ⟩ | |
104 (FMap F (TMap n b )) o (FMap F (FMap G f)) | |
105 ∎ | |
56 | 106 |
87 | 107 Nat*Functor : {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'') |
108 { G H : Functor B C } -> ( n : NTrans B C G H ) -> (F : Functor A B) -> NTrans A C (G ○ F) (H ○ F) | |
109 Nat*Functor A {B} C {G} {H} n F = record { | |
110 TMap = \a -> TMap n (FObj F a) | |
111 ; isNTrans = record { | |
130 | 112 commute = commute |
87 | 113 } |
114 } where | |
130 | 115 commute : {a b : Obj A} {f : Hom A a b} |
87 | 116 → C [ C [ ( FMap H (FMap F f )) o ( TMap n (FObj F a)) ] ≈ C [ (TMap n (FObj F b )) o (FMap G (FMap F f)) ] ] |
130 | 117 commute {a} {b} {f} = IsNTrans.commute ( isNTrans n) |
56 | 118 |
87 | 119 -- T ≃ (U_R ○ F_R) |
120 -- μ = U_R ε F_R | |
121 -- nat-ε | |
122 -- nat-η -- same as η but has different types | |
84 | 123 |
87 | 124 record MResolution {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) ( B : Category c₁' c₂' ℓ' ) |
125 ( T : Functor A A ) | |
94
4fa718e4fd77
Comparison Functor constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
91
diff
changeset
|
126 -- { η : NTrans A A identityFunctor T } |
4fa718e4fd77
Comparison Functor constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
91
diff
changeset
|
127 -- { μ : NTrans A A (T ○ T) T } |
4fa718e4fd77
Comparison Functor constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
91
diff
changeset
|
128 -- { M : Monad A T η μ } |
87 | 129 ( UR : Functor B A ) ( FR : Functor A B ) |
130 { ηR : NTrans A A identityFunctor ( UR ○ FR ) } | |
131 { εR : NTrans B B ( FR ○ UR ) identityFunctor } | |
132 { μR : NTrans A A ( (UR ○ FR) ○ ( UR ○ FR )) ( UR ○ FR ) } | |
133 ( Adj : Adjunction A B UR FR ηR εR ) | |
134 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where | |
135 field | |
136 T=UF : T ≃ (UR ○ FR) | |
137 μ=UεF : {x : Obj A } -> A [ TMap μR x ≈ FMap UR ( TMap εR ( FObj FR x ) ) ] | |
94
4fa718e4fd77
Comparison Functor constructed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
91
diff
changeset
|
138 -- ηR=η : {x : Obj A } -> A [ TMap ηR x ≈ TMap η x ] -- We need T -> UR FR conversion |
87 | 139 -- μR=μ : {x : Obj A } -> A [ TMap μR x ≈ TMap μ x ] |
86 | 140 |
88 | 141 |
260 | 142 record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (e : Hom A c a) (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
143 field | |
144 fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] | |
145 k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c | |
146 ek=h : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → A [ A [ e o k {d} h eq ] ≈ h ] | |
147 uniqueness : {d : Obj A} → ∀ {h : Hom A d a} → {eq : A [ A [ f o h ] ≈ A [ g o h ] ] } → {k' : Hom A d c } → | |
148 A [ A [ e o k' ] ≈ h ] → A [ k {d} h eq ≈ k' ] | |
149 equalizer : Hom A c a | |
150 equalizer = e | |
151 | |
152 -- | |
153 -- Product | |
154 -- | |
264 | 155 -- c |
156 -- f | g | |
157 -- |f×g | |
158 -- v | |
159 -- a <-------- ab ----------> b | |
160 -- π1 π2 | |
260 | 161 |
162 | |
163 record Product { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a b ab : Obj A) | |
164 ( π1 : Hom A ab a ) | |
165 ( π2 : Hom A ab b ) | |
166 : Set (ℓ ⊔ (c₁ ⊔ c₂)) where | |
167 field | |
168 _×_ : {c : Obj A} ( f : Hom A c a ) → ( g : Hom A c b ) → Hom A c ab | |
169 π1fxg=f : {c : Obj A} { f : Hom A c a } → { g : Hom A c b } → A [ A [ π1 o ( f × g ) ] ≈ f ] | |
170 π2fxg=g : {c : Obj A} { f : Hom A c a } → { g : Hom A c b } → A [ A [ π2 o ( f × g ) ] ≈ g ] | |
171 uniqueness : {c : Obj A} { h : Hom A c ab } → A [ ( A [ π1 o h ] ) × ( A [ π2 o h ] ) ≈ h ] | |
264 | 172 ×-cong : {c : Obj A} { f f' : Hom A c a } → { g g' : Hom A c b } → A [ f ≈ f' ] → A [ g ≈ g' ] → A [ f × g ≈ f' × g' ] |
260 | 173 axb : Obj A |
174 axb = ab | |
175 | |
176 -- | |
177 -- Pullback | |
178 -- f | |
179 -- a -------> c | |
180 -- ^ ^ | |
181 -- π1 | |g | |
182 -- | | | |
183 -- ab -------> b | |
184 -- ^ π2 | |
185 -- | | |
186 -- d | |
187 -- | |
188 record Pullback { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a b c ab : Obj A) | |
189 ( f : Hom A a c ) ( g : Hom A b c ) | |
190 ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) | |
191 : Set (ℓ ⊔ (c₁ ⊔ c₂)) where | |
192 field | |
193 commute : A [ A [ f o π1 ] ≈ A [ g o π2 ] ] | |
194 p : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → Hom A d ab | |
195 π1p=π1 : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } | |
196 → A [ A [ π1 o p eq ] ≈ π1' ] | |
197 π2p=π2 : { d : Obj A } → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } | |
198 → A [ A [ π2 o p eq ] ≈ π2' ] | |
199 uniqueness : { d : Obj A } → ( p' : Hom A d ab ) → { π1' : Hom A d a } { π2' : Hom A d b } → { eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ] } | |
200 → { π1p=π1' : A [ A [ π1 o p' ] ≈ π1' ] } | |
201 → { π2p=π2' : A [ A [ π2 o p' ] ≈ π2' ] } | |
202 → A [ p eq ≈ p' ] | |
203 axb : Obj A | |
204 axb = ab |