annotate pullback.agda @ 289:7dc163c026b7

move to iProduct axiom
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 25 Sep 2013 13:25:14 +0900
parents 04f598e500de
children 1f897357ec6c
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
260
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 -- Pullback from product and equalizer
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2 --
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 --
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4 -- Shinji KONO <kono@ie.u-ryukyu.ac.jp>
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 ----
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 open import Category -- https://github.com/konn/category-agda
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Level
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
9 module pullback { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ') ( Γ : Functor I A ) where
260
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import HomReasoning
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open import cat-utility
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
14 --
264
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
15 -- Pullback from equalizer and product
260
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 -- f
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 -- a -------> c
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
18 -- ^ ^
260
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19 -- π1 | |g
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 -- | |
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 -- ab -------> b
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22 -- ^ π2
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23 -- |
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
24 -- | e = equalizer (f π1) (g π1)
264
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
25 -- |
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
26 -- d <------------------ d'
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
27 -- k (π1' × π2' )
260
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28
261
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
29 open Equalizer
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
30 open Product
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
31 open Pullback
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
32
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
33 pullback-from : (a b c ab d : Obj A)
260
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34 ( f : Hom A a c ) ( g : Hom A b c )
261
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
35 ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) ( e : Hom A d ab )
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
36 ( eqa : {a b c : Obj A} → (f g : Hom A a b) → {e : Hom A c a } → Equalizer A e f g )
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
37 ( prod : Product A a b ab π1 π2 ) → Pullback A a b c d f g
261
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
38 ( A [ π1 o equalizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ){e} ) ] )
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
39 ( A [ π2 o equalizer ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ){e} ) ] )
261
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
40 pullback-from a b c ab d f g π1 π2 e eqa prod = record {
260
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
41 commute = commute1 ;
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
42 p = p1 ;
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
43 π1p=π1 = λ {d} {π1'} {π2'} {eq} → π1p=π11 {d} {π1'} {π2'} {eq} ;
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
44 π2p=π2 = λ {d} {π1'} {π2'} {eq} → π2p=π21 {d} {π1'} {π2'} {eq} ;
260
a87d3ea9efe4 pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45 uniqueness = uniqueness1
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
46 } where
261
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
47 commute1 : A [ A [ f o A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ≈ A [ g o A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] ] ]
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
48 commute1 = let open ≈-Reasoning (A) in
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
49 begin
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
50 f o ( π1 o equalizer (eqa ( f o π1 ) ( g o π2 )) )
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
51 ≈⟨ assoc ⟩
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
52 ( f o π1 ) o equalizer (eqa ( f o π1 ) ( g o π2 ))
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
53 ≈⟨ fe=ge (eqa (A [ f o π1 ]) (A [ g o π2 ])) ⟩
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
54 ( g o π2 ) o equalizer (eqa ( f o π1 ) ( g o π2 ))
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
55 ≈↑⟨ assoc ⟩
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
56 g o ( π2 o equalizer (eqa ( f o π1 ) ( g o π2 )) )
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
57
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
58 lemma1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] →
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
59 A [ A [ A [ f o π1 ] o (prod × π1') π2' ] ≈ A [ A [ g o π2 ] o (prod × π1') π2' ] ]
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
60 lemma1 {d'} { π1' } { π2' } eq = let open ≈-Reasoning (A) in
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
61 begin
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
62 ( f o π1 ) o (prod × π1') π2'
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
63 ≈↑⟨ assoc ⟩
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
64 f o ( π1 o (prod × π1') π2' )
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
65 ≈⟨ cdr (π1fxg=f prod) ⟩
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
66 f o π1'
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
67 ≈⟨ eq ⟩
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
68 g o π2'
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
69 ≈↑⟨ cdr (π2fxg=g prod) ⟩
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
70 g o ( π2 o (prod × π1') π2' )
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
71 ≈⟨ assoc ⟩
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
72 ( g o π2 ) o (prod × π1') π2'
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
73
261
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
74 p1 : {d' : Obj A} {π1' : Hom A d' a} {π2' : Hom A d' b} → A [ A [ f o π1' ] ≈ A [ g o π2' ] ] → Hom A d' d
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
75 p1 {d'} { π1' } { π2' } eq =
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
76 let open ≈-Reasoning (A) in k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) ( lemma1 eq )
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
77 π1p=π11 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} →
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
78 A [ A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ] o p1 eq ] ≈ π1' ]
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
79 π1p=π11 {d'} {π1'} {π2'} {eq} = let open ≈-Reasoning (A) in
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
80 begin
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
81 ( π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ) o p1 eq
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
82 ≈⟨⟩
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
83 ( π1 o e) o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq)
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
84 ≈↑⟨ assoc ⟩
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
85 π1 o ( e o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) )
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
86 ≈⟨ cdr ( ek=h ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} )) ⟩
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
87 π1 o (_×_ prod π1' π2' )
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
88 ≈⟨ π1fxg=f prod ⟩
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
89 π1'
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
90
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
91 π2p=π21 : {d₁ : Obj A} {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} →
263
c1b3193097ce on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 262
diff changeset
92 A [ A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ] o p1 eq ] ≈ π2' ]
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
93 π2p=π21 {d'} {π1'} {π2'} {eq} = let open ≈-Reasoning (A) in
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
94 begin
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
95 ( π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ]) {e} ) ) o p1 eq
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
96 ≈⟨⟩
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
97 ( π2 o e) o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq)
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
98 ≈↑⟨ assoc ⟩
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
99 π2 o ( e o k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq) )
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
100 ≈⟨ cdr ( ek=h ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} )) ⟩
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
101 π2 o (_×_ prod π1' π2' )
262
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
102 ≈⟨ π2fxg=g prod ⟩
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
103 π2'
e1b08c5e4d2e uniqueness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 261
diff changeset
104
261
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
105 uniqueness1 : {d₁ : Obj A} (p' : Hom A d₁ d) {π1' : Hom A d₁ a} {π2' : Hom A d₁ b} {eq : A [ A [ f o π1' ] ≈ A [ g o π2' ] ]} →
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
106 {eq1 : A [ A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π1' ]} →
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
107 {eq2 : A [ A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ] ≈ π2' ]} →
a2477147dfec pull back continue
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 260
diff changeset
108 A [ p1 eq ≈ p' ]
264
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
109 uniqueness1 {d'} p' {π1'} {π2'} {eq} {eq1} {eq2} = let open ≈-Reasoning (A) in
263
c1b3193097ce on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 262
diff changeset
110 begin
c1b3193097ce on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 262
diff changeset
111 p1 eq
c1b3193097ce on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 262
diff changeset
112 ≈⟨⟩
c1b3193097ce on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 262
diff changeset
113 k ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e} ) (_×_ prod π1' π2' ) (lemma1 eq)
264
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
114 ≈⟨ Equalizer.uniqueness (eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) {e}) ( begin
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
115 e o p'
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
116 ≈⟨⟩
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
117 equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p'
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
118 ≈↑⟨ Product.uniqueness prod ⟩
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
119 (prod × ( π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p') ) ( π2 o (equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p'))
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
120 ≈⟨ ×-cong prod (assoc) (assoc) ⟩
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
121 (prod × (A [ A [ π1 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ]))
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
122 (A [ A [ π2 o equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ])
264
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
123 ≈⟨ ×-cong prod eq1 eq2 ⟩
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
124 ((prod × π1') π2')
78ce12f8e6b6 pullback done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 263
diff changeset
125 ∎ ) ⟩
263
c1b3193097ce on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 262
diff changeset
126 p'
c1b3193097ce on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 262
diff changeset
127
c1b3193097ce on going ..
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 262
diff changeset
128
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
129 ------
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
130 --
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
131 -- Limit
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
132 --
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
133 -----
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
134
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
135 -- Constancy Functor
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
136
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
137 K : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) → ( a : Obj A ) → Functor I A
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
138 K I a = record {
265
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
139 FObj = λ i → a ;
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
140 FMap = λ f → id1 A a ;
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
141 isFunctor = let open ≈-Reasoning (A) in record {
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
142 ≈-cong = λ f=g → refl-hom
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
143 ; identity = refl-hom
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
144 ; distr = sym idL
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
145 }
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
146 }
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
147
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
148 open NTrans
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
149
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
150 record Limit { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A )
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
151 ( a0 : Obj A ) ( t0 : NTrans I A ( K I a0 ) Γ ) : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where
265
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
152 field
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
153 limit : ( a : Obj A ) → ( t : NTrans I A ( K I a ) Γ ) → Hom A a a0
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
154 t0f=t : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → ∀ { i : Obj I } →
265
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
155 A [ A [ TMap t0 i o limit a t ] ≈ TMap t i ]
271
28278175d696 limit2adjoint done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 270
diff changeset
156 limit-uniqueness : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a a0 } → ( ∀ { i : Obj I } →
28278175d696 limit2adjoint done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 270
diff changeset
157 A [ A [ TMap t0 i o f ] ≈ TMap t i ] ) → A [ limit a t ≈ f ]
270
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
158 A0 : Obj A
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
159 A0 = a0
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
160 T0 : NTrans I A ( K I a0 ) Γ
270
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
161 T0 = t0
265
367e8fde93ee add limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 264
diff changeset
162
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
163 --------------------------------
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
164 --
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
165 -- If we have two limits on c and c', there are isomorphic pair h, h'
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
166
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
167 open Limit
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
168
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
169 iso-l : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A )
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
170 ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K I a0 ) Γ ) ( t0' : NTrans I A ( K I a0' ) Γ )
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
171 ( lim : Limit I Γ a0 t0 ) → ( lim' : Limit I Γ a0' t0' )
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
172 → Hom A a0 a0'
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
173 iso-l I Γ a0 a0' t0 t0' lim lim' = limit lim' a0 t0
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
174
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
175 iso-r : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A )
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
176 ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K I a0 ) Γ ) ( t0' : NTrans I A ( K I a0' ) Γ )
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
177 ( lim : Limit I Γ a0 t0 ) → ( lim' : Limit I Γ a0' t0' )
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
178 → Hom A a0' a0
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
179 iso-r I Γ a0 a0' t0 t0' lim lim' = limit lim a0' t0'
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
180
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
181
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
182 iso-lr : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A )
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
183 ( a0 a0' : Obj A ) ( t0 : NTrans I A ( K I a0 ) Γ ) ( t0' : NTrans I A ( K I a0' ) Γ )
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
184 ( lim : Limit I Γ a0 t0 ) → ( lim' : Limit I Γ a0' t0' ) → ∀{ i : Obj I } →
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
185 A [ A [ iso-l I Γ a0 a0' t0 t0' lim lim' o iso-r I Γ a0 a0' t0 t0' lim lim' ] ≈ id1 A a0' ]
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
186 iso-lr I Γ a0 a0' t0 t0' lim lim' {i} = let open ≈-Reasoning (A) in begin
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
187 limit lim' a0 t0 o limit lim a0' t0'
271
28278175d696 limit2adjoint done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 270
diff changeset
188 ≈↑⟨ limit-uniqueness lim' ( λ {i} → ( begin
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
189 TMap t0' i o ( limit lim' a0 t0 o limit lim a0' t0' )
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
190 ≈⟨ assoc ⟩
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
191 ( TMap t0' i o limit lim' a0 t0 ) o limit lim a0' t0'
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
192 ≈⟨ car ( t0f=t lim' ) ⟩
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
193 TMap t0 i o limit lim a0' t0'
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
194 ≈⟨ t0f=t lim ⟩
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
195 TMap t0' i
271
28278175d696 limit2adjoint done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 270
diff changeset
196 ∎) ) ⟩
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
197 limit lim' a0' t0'
271
28278175d696 limit2adjoint done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 270
diff changeset
198 ≈⟨ limit-uniqueness lim' idR ⟩
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
199 id a0'
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
200
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
201
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
202
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
203 open import CatExponetial
267
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
204
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
205 open Functor
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
206
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
207 --------------------------------
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
208 --
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
209 -- Contancy Functor
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
210
268
2ff44ee3cb32 co universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 267
diff changeset
211 KI : { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) → Functor A ( A ^ I )
2ff44ee3cb32 co universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 267
diff changeset
212 KI { c₁'} {c₂'} {ℓ'} I = record {
267
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
213 FObj = λ a → K I a ;
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
214 FMap = λ f → record { -- NTrans I A (K I a) (K I b)
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
215 TMap = λ a → f ;
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
216 isNTrans = record {
267
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
217 commute = λ {a b f₁} → commute1 {a} {b} {f₁} f
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
218 }
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
219 } ;
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
220 isFunctor = let open ≈-Reasoning (A) in record {
267
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
221 ≈-cong = λ f=g {x} → f=g
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
222 ; identity = refl-hom
267
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
223 ; distr = refl-hom
266
9e9f1e27e89f iso on limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 265
diff changeset
224 }
267
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
225 } where
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
226 commute1 : {a b : Obj I} {f₁ : Hom I a b} → {a' b' : Obj A} → (f : Hom A a' b' ) →
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
227 A [ A [ FMap (K I b') f₁ o f ] ≈ A [ f o FMap (K I a') f₁ ] ]
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
228 commute1 {a} {b} {f₁} {a'} {b'} f = let open ≈-Reasoning (A) in begin
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
229 FMap (K I b') f₁ o f
267
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
230 ≈⟨ idL ⟩
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
231 f
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
232 ≈↑⟨ idR ⟩
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
233 f o FMap (K I a') f₁
267
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
234
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
235
b1b728559d89 Constancy Functor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 266
diff changeset
236
272
5f2b8a5cc115 adjunction to limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 271
diff changeset
237 ---------
5f2b8a5cc115 adjunction to limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 271
diff changeset
238 --
5f2b8a5cc115 adjunction to limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 271
diff changeset
239 -- limit gives co universal mapping ( i.e. adjunction )
5f2b8a5cc115 adjunction to limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 271
diff changeset
240 --
5f2b8a5cc115 adjunction to limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 271
diff changeset
241 -- F = KI I : Functor A (A ^ I)
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
242 -- U = λ b → A0 (lim b {a0 b} {t0 b}
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
243 -- ε = λ b → T0 ( lim b {a0 b} {t0 b} )
272
5f2b8a5cc115 adjunction to limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 271
diff changeset
244
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
245 limit2couniv :
270
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
246 ( lim : ( Γ : Functor I A ) → { a0 : Obj A } { t0 : NTrans I A ( K I a0 ) Γ } → Limit I Γ a0 t0 )
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
247 → ( a0 : ( b : Functor I A ) → Obj A ) ( t0 : ( b : Functor I A ) → NTrans I A ( K I (a0 b) ) b )
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
248 → coUniversalMapping A ( A ^ I ) (KI I) (λ b → A0 (lim b {a0 b} {t0 b} ) ) ( λ b → T0 ( lim b {a0 b} {t0 b} ) )
277
21ef5ba54458 2 yellow remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 276
diff changeset
249 limit2couniv lim a0 t0 = record { -- F U ε
274
1b651faa2391 adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
250 _*' = λ {b} {a} k → limit (lim b {a0 b} {t0 b} ) a k ; -- η
270
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
251 iscoUniversalMapping = record {
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
252 couniversalMapping = λ{ b a f} → couniversalMapping1 {b} {a} {f} ;
271
28278175d696 limit2adjoint done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 270
diff changeset
253 couniquness = couniquness2
270
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
254 }
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
255 } where
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
256 couniversalMapping1 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} →
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
257 A ^ I [ A ^ I [ T0 (lim b {a0 b} {t0 b}) o FMap (KI I) (limit (lim b {a0 b} {t0 b}) a f) ] ≈ f ]
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
258 couniversalMapping1 {b} {a} {f} {i} = let open ≈-Reasoning (A) in begin
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
259 TMap (T0 (lim b {a0 b} {t0 b})) i o TMap ( FMap (KI I) (limit (lim b {a0 b} {t0 b}) a f) ) i
270
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
260 ≈⟨⟩
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
261 TMap (t0 b) i o (limit (lim b) a f)
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
262 ≈⟨ t0f=t (lim b) ⟩
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
263 TMap f i -- i comes from ∀{i} → B [ TMap f i ≈ TMap g i ]
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
264
271
28278175d696 limit2adjoint done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 270
diff changeset
265 couniquness2 : {b : Obj (A ^ I)} {a : Obj A} {f : Hom (A ^ I) (FObj (KI I) a) b} {g : Hom A a (A0 (lim b {a0 b} {t0 b} ))} →
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
266 ( ∀ { i : Obj I } → A [ A [ TMap (T0 (lim b {a0 b} {t0 b} )) i o TMap ( FMap (KI I) g) i ] ≈ TMap f i ] )
272
5f2b8a5cc115 adjunction to limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 271
diff changeset
267 → A [ limit (lim b {a0 b} {t0 b} ) a f ≈ g ]
271
28278175d696 limit2adjoint done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 270
diff changeset
268 couniquness2 {b} {a} {f} {g} lim-g=f = let open ≈-Reasoning (A) in begin
270
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
269 limit (lim b {a0 b} {t0 b} ) a f
271
28278175d696 limit2adjoint done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 270
diff changeset
270 ≈⟨ limit-uniqueness ( lim b {a0 b} {t0 b} ) lim-g=f ⟩
270
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
271 g
8ba03259a177 one yellow remain on ∀{x} → B [ TMap f x ≈ TMap g x ]
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 269
diff changeset
272
268
2ff44ee3cb32 co universal mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 267
diff changeset
273
272
5f2b8a5cc115 adjunction to limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 271
diff changeset
274 open import Category.Cat
275
62e84bea7b29 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
275
62e84bea7b29 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 274
diff changeset
276
278
9fafe4a53f89 univ2limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 277
diff changeset
277 open coUniversalMapping
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
278
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
279 univ2limit :
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
280 ( U : Obj (A ^ I ) → Obj A )
279
8df8e74e6316 limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 278
diff changeset
281 ( ε : ( b : Obj (A ^ I ) ) → NTrans I A (K I (U b)) b )
8df8e74e6316 limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 278
diff changeset
282 ( univ : coUniversalMapping A (A ^ I) (KI I) U (ε) ) →
8df8e74e6316 limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 278
diff changeset
283 ( Γ : Functor I A ) → Limit I Γ (U Γ) (ε Γ)
278
9fafe4a53f89 univ2limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 277
diff changeset
284 univ2limit U ε univ Γ = record {
272
5f2b8a5cc115 adjunction to limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 271
diff changeset
285 limit = λ a t → limit1 a t ;
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
286 t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ;
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
287 limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f
272
5f2b8a5cc115 adjunction to limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 271
diff changeset
288 } where
279
8df8e74e6316 limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 278
diff changeset
289 limit1 : (a : Obj A) → NTrans I A (K I a) Γ → Hom A a (U Γ)
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
290 limit1 a t = _*' univ {_} {a} t
279
8df8e74e6316 limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 278
diff changeset
291 t0f=t1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {i : Obj I} →
8df8e74e6316 limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 278
diff changeset
292 A [ A [ TMap (ε Γ) i o limit1 a t ] ≈ TMap t i ]
274
1b651faa2391 adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
293 t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin
279
8df8e74e6316 limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 278
diff changeset
294 TMap (ε Γ) i o limit1 a t
274
1b651faa2391 adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
295 ≈⟨⟩
280
7ae58263d45b univ2limit done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
296 TMap (ε Γ) i o _*' univ {Γ} {a} t
7ae58263d45b univ2limit done.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
297 ≈⟨ coIsUniversalMapping.couniversalMapping ( iscoUniversalMapping univ) {Γ} {a} {t} ⟩
274
1b651faa2391 adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
298 TMap t i
1b651faa2391 adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
299
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
300 limit-uniqueness1 : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a (U Γ)}
279
8df8e74e6316 limit and prod/equalizer
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 278
diff changeset
301 → ( ∀ { i : Obj I } → A [ A [ TMap (ε Γ) i o f ] ≈ TMap t i ] ) → A [ limit1 a t ≈ f ]
274
1b651faa2391 adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
302 limit-uniqueness1 {a} {t} {f} εf=t = let open ≈-Reasoning (A) in begin
278
9fafe4a53f89 univ2limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 277
diff changeset
303 _*' univ t
9fafe4a53f89 univ2limit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 277
diff changeset
304 ≈⟨ ( coIsUniversalMapping.couniquness ( iscoUniversalMapping univ) ) εf=t ⟩
274
1b651faa2391 adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
305 f
1b651faa2391 adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
306
1b651faa2391 adjoint2limit problems are written
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
307
281
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
308 -----
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
309 --
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
310 -- product on arbitrary index
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
311 --
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
312
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
313 record IProduct { c c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Set c)
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
314 ( p : Obj A ) -- product
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
315 ( ai : I → Obj A ) -- families
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
316 ( pi : (i : I ) → Hom A p ( ai i ) ) -- projections
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
317 : Set (c ⊔ ℓ ⊔ (c₁ ⊔ c₂)) where
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
318 field
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
319 product : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → Hom A q p
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
320 pif=q : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ∀ { i : I } → A [ A [ ( pi i ) o ( product qi ) ] ≈ (qi i) ]
289
7dc163c026b7 move to iProduct axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 288
diff changeset
321 -- special case of product ( qi = pi )
7dc163c026b7 move to iProduct axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 288
diff changeset
322 pif=q1 : { i : I } → { qi : Hom A p (ai i) } → A [ pi i ≈ qi ]
281
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
323 ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ product ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ]
283
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
324 ip-cong : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) }
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
325 → ( ∀ (i : I ) → A [ qi i ≈ qi' i ] ) → A [ product qi ≈ product qi' ]
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
326
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
327 open IProduct
283
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
328 open Equalizer
281
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
329
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
330 --
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
331 -- limit from equalizer and product
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
332 --
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
333 --
283
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
334 -- ai
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
335 -- ^ K f = id lim
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
336 -- | pi lim = K i ------------> K j = lim
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
337 -- | | |
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
338 -- p | |
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
339 -- ^ ε i | | ε j
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
340 -- | | |
285
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
341 -- | e = equalizer (id p) (id p) | |
283
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
342 -- | v v
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
343 -- lim <------------------ d' a i = Γ i ------------> Γ j = a j
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
344 -- k ( product pi ) Γ f
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
345 -- Γ f o ε i = ε j
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
346 --
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
347 --
281
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
348
283
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
349 limit-ε :
281
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
350 ( prod : (p : Obj A) ( ai : Obj I → Obj A ) ( pi : (i : Obj I) → Hom A p ( ai i ) )
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
351 → IProduct {c₁'} A (Obj I) p ai pi )
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
352 ( eqa : {a b c : Obj A} → (e : Hom A c a ) → (f g : Hom A a b) → Equalizer A e f g )
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
353 ( Γ : Functor I A ) →
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
354 ( lim p : Obj A ) ( e : Hom A lim p )
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
355 ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) →
281
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
356 NTrans I A (K I lim) Γ
289
7dc163c026b7 move to iProduct axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 288
diff changeset
357 limit-ε prod eqa Γ lim p e proj = record {
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
358 TMap = tmap ;
281
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
359 isNTrans = record {
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
360 commute = commute1
281
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
361 }
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
362 } where
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
363 tmap : (i : Obj I) → Hom A (FObj (K I lim) i) (FObj Γ i)
285
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
364 tmap i = A [ proj i o e ]
283
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
365 commute1 : {i j : Obj I} {f : Hom I i j} →
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
366 A [ A [ FMap Γ f o tmap i ] ≈ A [ tmap j o FMap (K I lim) f ] ]
285
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
367 commute1 {i} {j} {f} = let open ≈-Reasoning (A) in begin
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
368 FMap Γ f o tmap i
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
369 ≈⟨⟩
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
370 FMap Γ f o ( proj i o e )
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
371 ≈⟨ assoc ⟩
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
372 ( FMap Γ f o proj i ) o e
289
7dc163c026b7 move to iProduct axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 288
diff changeset
373 ≈↑⟨ car ( pif=q1 ( prod p (FObj Γ) proj ) {j} ) ⟩
285
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
374 proj j o e
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
375 ≈↑⟨ idR ⟩
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
376 (proj j o e ) o id1 A lim
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
377 ≈⟨⟩
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
378 tmap j o FMap (K I lim) f
288
04f598e500de give up ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 287
diff changeset
379
281
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
380
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
381 limit-from :
285
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
382 ( prod : (p : Obj A) ( ai : Obj I → Obj A ) ( pi : (i : Obj I) → Hom A p ( ai i ) )
281
dbd2044add2a limit from product and equalizer continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 280
diff changeset
383 → IProduct {c₁'} A (Obj I) p ai pi )
285
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
384 ( eqa : {a b c : Obj A} → (e : Hom A c a ) → (f g : Hom A a b) → Equalizer A e f g )
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
385 ( Γ : Functor I A ) → ( lim p : Obj A ) -- limit to be made
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
386 ( e : Hom A lim p ) -- existing of equalizer
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
387 ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) -- existing of product ( projection actually )
289
7dc163c026b7 move to iProduct axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 288
diff changeset
388 → Limit I Γ lim ( limit-ε prod eqa Γ lim p e proj )
7dc163c026b7 move to iProduct axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 288
diff changeset
389 limit-from prod eqa Γ lim p e proj = record {
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
390 limit = λ a t → limit1 a t ;
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
391 t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ;
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
392 limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
393 } where
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
394 limit1 : (a : Obj A) → NTrans I A (K I a) Γ → Hom A a lim
283
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
395 limit1 a t = let open ≈-Reasoning (A) in k (eqa e (id1 A p) (id1 A p )) (product ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
396 t0f=t1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {i : Obj I} →
289
7dc163c026b7 move to iProduct axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 288
diff changeset
397 A [ A [ TMap (limit-ε prod eqa Γ lim p e proj ) i o limit1 a t ] ≈ TMap t i ]
283
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
398 t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin
289
7dc163c026b7 move to iProduct axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 288
diff changeset
399 TMap (limit-ε prod eqa Γ lim p e proj ) i o limit1 a t
283
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
400 ≈⟨⟩
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
401 ( ( proj i ) o e ) o k (eqa e (id1 A p) (id1 A p )) (product ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
402 ≈↑⟨ assoc ⟩
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
403 proj i o ( e o k (eqa e (id1 A p) (id1 A p )) (product ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom )
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
404 ≈⟨ cdr ( ek=h ( eqa e (id1 A p) (id1 A p ) ) ) ⟩
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
405 proj i o product (prod p (FObj Γ) proj) (TMap t)
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
406 ≈⟨ pif=q (prod p (FObj Γ) proj) (TMap t) ⟩
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
407 TMap t i
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
408
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
409 limit-uniqueness1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {f : Hom A a lim}
289
7dc163c026b7 move to iProduct axiom
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 288
diff changeset
410 → ({i : Obj I} → A [ A [ TMap (limit-ε prod eqa Γ lim p e proj ) i o f ] ≈ TMap t i ]) →
282
c831abfa9bf4 limit on going...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 281
diff changeset
411 A [ limit1 a t ≈ f ]
283
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
412 limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in begin
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
413 limit1 a t
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
414 ≈⟨⟩
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
415 k (eqa e (id1 A p) (id1 A p )) (product ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
416 ≈⟨ Equalizer.uniqueness (eqa e (id1 A p) (id1 A p )) ( begin
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
417 e o f
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
418 ≈↑⟨ ip-uniqueness (prod p (FObj Γ) proj) ⟩
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
419 product (prod p (FObj Γ) proj) (λ i → ( proj i o ( e o f ) ) )
284
4be696e3fd94 comutativity remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 283
diff changeset
420 ≈⟨ ip-cong (prod p (FObj Γ) proj) ( λ i → begin
285
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
421 proj i o ( e o f )
284
4be696e3fd94 comutativity remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 283
diff changeset
422 ≈⟨ assoc ⟩
285
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
423 ( proj i o e ) o f
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
424 ≈⟨ lim=t {i} ⟩
46d4ad55b948 commutativity continue...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 284
diff changeset
425 TMap t i
284
4be696e3fd94 comutativity remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 283
diff changeset
426 ∎ ) ⟩
283
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
427 product (prod p (FObj Γ) proj) (TMap t)
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
428 ∎ ) ⟩
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
429 f
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
430
5492a0681f55 on going ...
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 282
diff changeset
431