Mercurial > hg > Members > kono > Proof > category
annotate src/SetsCompleteness.agda @ 1036:b836c3dc7a29
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Apr 2021 11:26:44 +0900 |
parents | 40c39d3e6a75 |
children | 45de2b31bf02 |
rev | line source |
---|---|
606 | 1 open import Category -- https://github.com/konn/category-agda |
500
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
2 open import Level |
535 | 3 open import Category.Sets renaming ( _o_ to _*_ ) |
500
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
4 |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 module SetsCompleteness where |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
6 |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
7 open import cat-utility |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
8 open import Relation.Binary.Core |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
9 open import Function |
510
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
10 import Relation.Binary.PropositionalEquality |
666 | 11 -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → ( λ x → f x ≡ λ x → g x ) |
1034 | 12 -- import Axiom.Extensionality.Propositional |
13 -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Axiom.Extensionality.Propositional.Extensionality c₂ c₂ | |
986 | 14 -- Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ |
510
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
15 |
606 | 16 ≡cong = Relation.Binary.PropositionalEquality.cong |
510
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
17 |
781 | 18 open import Relation.Binary.PropositionalEquality hiding ( [_] ) |
19 | |
604 | 20 lemma1 : { c₂ : Level } {a b : Obj (Sets { c₂})} {f g : Hom Sets a b} → |
524 | 21 Sets [ f ≈ g ] → (x : a ) → f x ≡ g x |
604 | 22 lemma1 refl x = refl |
503 | 23 |
504 | 24 record Σ {a} (A : Set a) (B : Set a) : Set a where |
503 | 25 constructor _,_ |
26 field | |
27 proj₁ : A | |
606 | 28 proj₂ : B |
503 | 29 |
30 open Σ public | |
500
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
31 |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
32 |
681
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
33 SetsProduct : { c₂ : Level} → ( a b : Obj (Sets {c₂})) → Product ( Sets { c₂} ) a b |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
34 SetsProduct { c₂ } a b = record { |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
35 product = Σ a b |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
36 ; π1 = λ ab → (proj₁ ab) |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
37 ; π2 = λ ab → (proj₂ ab) |
bd8f7346f252
fix Product and pullback
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
676
diff
changeset
|
38 ; isProduct = record { |
606 | 39 _×_ = λ f g x → record { proj₁ = f x ; proj₂ = g x } -- ( f x , g x ) |
500
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
40 ; π1fxg=f = refl |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
41 ; π2fxg=g = refl |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
42 ; uniqueness = refl |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
43 ; ×-cong = λ {c} {f} {f'} {g} {g'} f=f g=g → prod-cong a b f=f g=g |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
44 } |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
45 } where |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
46 prod-cong : ( a b : Obj (Sets {c₂}) ) {c : Obj (Sets {c₂}) } {f f' : Hom Sets c a } {g g' : Hom Sets c b } |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
47 → Sets [ f ≈ f' ] → Sets [ g ≈ g' ] |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
48 → Sets [ (λ x → f x , g x) ≈ (λ x → f' x , g' x) ] |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
49 prod-cong a b {c} {f} {.f} {g} {.g} refl refl = refl |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
50 |
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
51 |
604 | 52 record iproduct {a} (I : Set a) ( pi0 : I → Set a ) : Set a where |
508
3ce21b2a671a
IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
507
diff
changeset
|
53 field |
604 | 54 pi1 : ( i : I ) → pi0 i |
508
3ce21b2a671a
IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
507
diff
changeset
|
55 |
604 | 56 open iproduct |
574 | 57 |
986 | 58 open Small |
59 | |
606 | 60 SetsIProduct : { c₂ : Level} → (I : Obj Sets) (ai : I → Obj Sets ) |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
61 → IProduct I ( Sets { c₂} ) ai |
508
3ce21b2a671a
IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
507
diff
changeset
|
62 SetsIProduct I fi = record { |
673
0007f9a25e9c
fix limit from product and equalizer (not yet finished )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
672
diff
changeset
|
63 iprod = iproduct I fi |
604 | 64 ; pi = λ i prod → pi1 prod i |
509 | 65 ; isIProduct = record { |
604 | 66 iproduct = iproduct1 |
676 | 67 ; pif=q = λ {q} {qi} {i} → pif=q {q} {qi} {i} |
509 | 68 ; ip-uniqueness = ip-uniqueness |
604 | 69 ; ip-cong = ip-cong |
509 | 70 } |
71 } where | |
604 | 72 iproduct1 : {q : Obj Sets} → ((i : I) → Hom Sets q (fi i)) → Hom Sets q (iproduct I fi) |
73 iproduct1 {q} qi x = record { pi1 = λ i → (qi i) x } | |
676 | 74 pif=q : {q : Obj Sets} {qi : (i : I) → Hom Sets q (fi i)} → {i : I} → Sets [ Sets [ (λ prod → pi1 prod i) o iproduct1 qi ] ≈ qi i ] |
75 pif=q {q} {qi} {i} = refl | |
604 | 76 ip-uniqueness : {q : Obj Sets} {h : Hom Sets q (iproduct I fi)} → Sets [ iproduct1 (λ i → Sets [ (λ prod → pi1 prod i) o h ]) ≈ h ] |
509 | 77 ip-uniqueness = refl |
604 | 78 ipcx : {q : Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → (x : q) → iproduct1 qi x ≡ iproduct1 qi' x |
606 | 79 ipcx {q} {qi} {qi'} qi=qi x = |
604 | 80 begin |
81 record { pi1 = λ i → (qi i) x } | |
82 ≡⟨ ≡cong ( λ QIX → record { pi1 = QIX } ) ( extensionality Sets (λ i → ≡cong ( λ f → f x ) (qi=qi i) )) ⟩ | |
83 record { pi1 = λ i → (qi' i) x } | |
84 ∎ where | |
606 | 85 open import Relation.Binary.PropositionalEquality |
86 open ≡-Reasoning | |
604 | 87 ip-cong : {q : Obj Sets} {qi qi' : (i : I) → Hom Sets q (fi i)} → ((i : I) → Sets [ qi i ≈ qi' i ]) → Sets [ iproduct1 qi ≈ iproduct1 qi' ] |
88 ip-cong {q} {qi} {qi'} qi=qi = extensionality Sets ( ipcx qi=qi ) | |
509 | 89 |
986 | 90 data coproduct {c} (a b : Set c) : Set c where |
91 k1 : ( i : a ) → coproduct a b | |
92 k2 : ( i : b ) → coproduct a b | |
93 | |
94 SetsCoProduct : { c₂ : Level} → (a b : Obj (Sets {c₂})) → coProduct Sets a b | |
95 SetsCoProduct a b = record { | |
96 coproduct = coproduct a b | |
97 ; κ1 = λ i → k1 i | |
98 ; κ2 = λ i → k2 i | |
99 ; isProduct = record { | |
100 _+_ = sum | |
101 ; κ1f+g=f = extensionality Sets (λ x → refl ) | |
102 ; κ2f+g=g = extensionality Sets (λ x → refl ) | |
103 ; uniqueness = λ {c} {h} → extensionality Sets (λ x → uniq {c} {h} x ) | |
104 ; +-cong = λ {c} {f} {f'} {g} {g'} feq geq → extensionality Sets (pccong feq geq) | |
105 } | |
106 } where | |
107 sum : {c : Obj Sets} → Hom Sets a c → Hom Sets b c → Hom Sets (coproduct a b ) c | |
108 sum {c} f g (k1 i) = f i | |
109 sum {c} f g (k2 i) = g i | |
110 uniq : {c : Obj Sets} {h : Hom Sets (coproduct a b) c} → (x : coproduct a b ) → sum (Sets [ h o (λ i → k1 i) ]) (Sets [ h o (λ i → k2 i) ]) x ≡ h x | |
111 uniq {c} {h} (k1 i) = refl | |
112 uniq {c} {h} (k2 i) = refl | |
113 pccong : {c : Obj Sets} {f f' : Hom Sets a c} {g g' : Hom Sets b c} → f ≡ f' → g ≡ g' → (x : coproduct a b ) → sum f g x ≡ sum f' g' x | |
114 pccong refl refl (k1 i) = refl | |
115 pccong refl refl (k2 i) = refl | |
116 | |
117 | |
118 data icoproduct {a} (I : Set a) (ki : I → Set a) : Set a where | |
119 ki1 : (i : I) (x : ki i ) → icoproduct I ki | |
120 | |
121 SetsICoProduct : { c₂ : Level} → (I : Obj (Sets {c₂})) (ci : I → Obj Sets ) | |
122 → ICoProduct I ( Sets { c₂} ) ci | |
123 SetsICoProduct I fi = record { | |
124 icoprod = icoproduct I fi | |
125 ; ki = λ i x → ki1 i x | |
126 ; isICoProduct = record { | |
127 icoproduct = isum | |
128 ; kif=q = λ {q} {qi} {i} → kif=q {q} {qi} {i} | |
129 ; icp-uniqueness = uniq | |
130 ; icp-cong = iccong | |
131 } | |
132 } where | |
133 isum : {q : Obj Sets} → ((i : I) → Hom Sets (fi i) q) → Hom Sets (icoproduct I fi) q | |
134 isum {q} fi (ki1 i x) = fi i x | |
135 kif=q : {q : Obj Sets} {qi : (i : I) → Hom Sets (fi i) q} {i : I} → Sets [ Sets [ isum qi o (λ x → ki1 i x) ] ≈ qi i ] | |
136 kif=q {q} {qi} {i} = extensionality Sets (λ x → refl ) | |
137 uniq : {q : Obj Sets} {h : Hom Sets (icoproduct I fi) q} → Sets [ isum (λ i → Sets [ h o (λ x → ki1 i x) ]) ≈ h ] | |
138 uniq {q} {h} = extensionality Sets u1 where | |
139 u1 : (x : icoproduct I fi ) → isum (λ i → Sets [ h o (λ x₁ → ki1 i x₁) ]) x ≡ h x | |
140 u1 (ki1 i x) = refl | |
141 iccong : {q : Obj Sets} {qi qi' : (i : I) → Hom Sets (fi i) q} → ((i : I) → Sets [ qi i ≈ qi' i ]) → Sets [ isum qi ≈ isum qi' ] | |
142 iccong {q} {qi} {qi'} ieq = extensionality Sets u2 where | |
143 u2 : (x : icoproduct I fi ) → isum qi x ≡ isum qi' x | |
144 u2 (ki1 i x) = cong (λ k → k x ) (ieq i) | |
509 | 145 |
510
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
146 -- |
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
147 -- e f |
606 | 148 -- c -------→ a ---------→ b f ( f' |
604 | 149 -- ^ . ---------→ |
510
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
150 -- | . g |
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
151 -- |k . |
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
152 -- | . h |
604 | 153 --y : d |
509 | 154 |
522
8fd030f9f572
Equalizer in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
521
diff
changeset
|
155 -- cf. https://github.com/danr/Agda-projects/blob/master/Category-Theory/Equalizer.agda |
508
3ce21b2a671a
IProduct is written in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
507
diff
changeset
|
156 |
510
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
157 data sequ {c : Level} (A B : Set c) ( f g : A → B ) : Set c where |
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
158 elem : (x : A ) → (eq : f x ≡ g x) → sequ A B f g |
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
159 |
532
d5d7163f2a1d
equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
531
diff
changeset
|
160 equ : { c₂ : Level} {a b : Obj (Sets {c₂}) } { f g : Hom (Sets {c₂}) a b } → ( sequ a b f g ) → a |
606 | 161 equ (elem x eq) = x |
532
d5d7163f2a1d
equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
531
diff
changeset
|
162 |
606 | 163 fe=ge0 : { c₂ : Level} {a b : Obj (Sets {c₂}) } { f g : Hom (Sets {c₂}) a b } → |
533 | 164 (x : sequ a b f g) → (Sets [ f o (λ e → equ e) ]) x ≡ (Sets [ g o (λ e → equ e) ]) x |
165 fe=ge0 (elem x eq ) = eq | |
166 | |
541 | 167 irr : { c₂ : Level} {d : Set c₂ } { x y : d } ( eq eq' : x ≡ y ) → eq ≡ eq' |
168 irr refl refl = refl | |
1032 | 169 elm-cong : { c₂ : Level} {a b : Set c₂} {f g : Hom (Sets {c₂}) a b} (x y : sequ a b f g) → equ x ≡ equ y → x ≡ y |
170 elm-cong ( elem x eq ) (elem .x eq' ) refl = ≡cong ( λ ee → elem x ee ) ( irr eq eq' ) | |
541 | 171 |
510
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
172 open sequ |
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
173 |
532
d5d7163f2a1d
equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
531
diff
changeset
|
174 -- equalizer-c = sequ a b f g |
d5d7163f2a1d
equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
531
diff
changeset
|
175 -- ; equalizer = λ e → equ e |
d5d7163f2a1d
equalizer does not fit
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
531
diff
changeset
|
176 |
669 | 177 SetsIsEqualizer : { c₂ : Level} → (a b : Obj (Sets {c₂}) ) (f g : Hom (Sets {c₂}) a b) → IsEqualizer Sets (λ e → equ e) f g |
606 | 178 SetsIsEqualizer {c₂} a b f g = record { |
604 | 179 fe=ge = fe=ge |
180 ; k = k | |
181 ; ek=h = λ {d} {h} {eq} → ek=h {d} {h} {eq} | |
510
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
182 ; uniqueness = uniqueness |
5eb4b69bf541
equalizer in Sets , uniquness remains
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
509
diff
changeset
|
183 } where |
604 | 184 fe=ge : Sets [ Sets [ f o (λ e → equ e ) ] ≈ Sets [ g o (λ e → equ e ) ] ] |
606 | 185 fe=ge = extensionality Sets (fe=ge0 ) |
604 | 186 k : {d : Obj Sets} (h : Hom Sets d a) → Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ] → Hom Sets d (sequ a b f g) |
187 k {d} h eq = λ x → elem (h x) ( ≡cong ( λ y → y x ) eq ) | |
188 ek=h : {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ e ) o k h eq ] ≈ h ] | |
606 | 189 ek=h {d} {h} {eq} = refl |
523 | 190 injection : { c₂ : Level } {a b : Obj (Sets { c₂})} (f : Hom Sets a b) → Set c₂ |
191 injection f = ∀ x y → f x ≡ f y → x ≡ y | |
522
8fd030f9f572
Equalizer in Sets done
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
521
diff
changeset
|
192 lemma5 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → |
604 | 193 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ (k h fh=gh x) ≡ equ (k' x) |
194 lemma5 refl x = refl -- somehow this is not equal to lemma1 | |
512 | 195 uniqueness : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → |
196 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] | |
525 | 197 uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ ( x : d ) → begin |
198 k h fh=gh x | |
199 ≡⟨ elm-cong ( k h fh=gh x) ( k' x ) (lemma5 {d} {h} {fh=gh} {k'} ek'=h x ) ⟩ | |
200 k' x | |
201 ∎ ) where | |
202 open import Relation.Binary.PropositionalEquality | |
203 open ≡-Reasoning | |
204 | |
999 | 205 |
1009 | 206 -- -- we have to make this Level c, that is {B : Set c} → (A → B) is iso to I : Set c |
207 -- record cequ {c : Level} (A B : Set c) : Set (suc c) where | |
208 -- field | |
209 -- rev : {B : Set c} → (A → B) → B → A | |
210 -- surjective : {B : Set c } (x : B ) → (g : A → B) → g (rev g x) ≡ x | |
999 | 211 |
1009 | 212 -- -- λ f₁ x y → (λ x₁ → x (f₁ x₁)) ≡ (λ x₁ → y (f₁ x₁)) → x ≡ y |
213 -- -- λ x y → (λ x₁ → x x₁ ≡ y x₁) → x ≡ y | |
214 -- -- Y / R | |
215 | |
216 -- open import HomReasoning | |
986 | 217 |
1009 | 218 -- etsIsCoEqualizer : { c₂ : Level} → (a b : Obj (Sets {c₂}) ) (f g : Hom (Sets {c₂}) a b) |
219 -- → IsCoEqualizer Sets (λ x → {!!} ) f g | |
220 -- etsIsCoEqualizer {c₂} a b f g = record { | |
221 -- ef=eg = extensionality Sets (λ x → {!!} ) | |
222 -- ; k = {!!} | |
223 -- ; ke=h = λ {d} {h} {eq} → ke=h {d} {h} {eq} | |
224 -- ; uniqueness = {!!} | |
225 -- } where | |
226 -- c : Set c₂ | |
227 -- c = {!!} --cequ a b | |
228 -- d : cequ a b | |
229 -- d = {!!} | |
230 -- ef=eg : Sets [ Sets [ cequ.rev d f o f ] ≈ Sets [ cequ.rev d g o g ] ] | |
231 -- ef=eg = begin | |
232 -- Sets [ cequ.rev d f o f ] ≈↑⟨ idL ⟩ | |
233 -- Sets [ id1 Sets _ o Sets [ cequ.rev d f o f ] ] ≈↑⟨ assoc ⟩ | |
234 -- Sets [ Sets [ id1 Sets _ o cequ.rev d f ] o f ] ≈⟨ {!!} ⟩ | |
235 -- Sets [ Sets [ id1 Sets _ o cequ.rev d (id1 Sets _) ] o {!!} ] ≈⟨ car ( extensionality Sets (λ x → cequ.surjective d {!!} {!!} )) ⟩ | |
236 -- Sets [ {!!} o f ] ≈⟨ {!!} ⟩ | |
237 -- Sets [ id1 Sets _ o Sets [ cequ.rev d g o g ] ] ≈⟨ idL ⟩ | |
238 -- Sets [ cequ.rev d g o g ] ∎ where open ≈-Reasoning Sets | |
239 -- epi : { c₂ : Level } {a b c : Obj (Sets { c₂})} (e : Hom Sets b c ) → (f g : Hom Sets a b) → Set c₂ | |
240 -- epi e f g = Sets [ Sets [ e o f ] ≈ Sets [ e o g ] ] → Sets [ f ≈ g ] | |
241 -- k : {d : Obj Sets} (h : Hom Sets b d) → Sets [ Sets [ h o f ] ≈ Sets [ h o g ] ] → Hom Sets c d | |
242 -- k {d} h hf=hg = {!!} where | |
243 -- ca : Sets [ Sets [ h o f ] ≈ Sets [ h o g ] ] → a -- (λ x → h (f x)) ≡ (λ x → h (g x)) | |
244 -- ca eq = {!!} | |
245 -- cd : ( {y : a} → f y ≡ g y → sequ a b f g ) → d | |
246 -- cd = {!!} | |
247 -- ke=h : {d : Obj Sets } {h : Hom Sets b d } → { eq : Sets [ Sets [ h o f ] ≈ Sets [ h o g ] ] } | |
248 -- → Sets [ Sets [ k h eq o {!!} ] ≈ h ] | |
249 -- ke=h {d} {h} {eq} = extensionality Sets ( λ x → begin | |
250 -- k h eq ( {!!}) ≡⟨ {!!} ⟩ | |
251 -- h (f {!!}) ≡⟨ {!!} ⟩ | |
252 -- h (g {!!}) ≡⟨ {!!} ⟩ | |
253 -- h x | |
254 -- ∎ ) where | |
255 -- open import Relation.Binary.PropositionalEquality | |
256 -- open ≡-Reasoning | |
997 | 257 |
500
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
258 |
501
61daa68a70c4
Sets completeness failed
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
500
diff
changeset
|
259 open Functor |
500
6c993c1fe9de
try to make prodcut and equalizer in Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
260 |
538 | 261 ---- |
262 -- C is locally small i.e. Hom C i j is a set c₁ | |
263 -- | |
986 | 264 -- record Small { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) |
265 -- : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | |
266 -- field | |
267 -- hom→ : {i j : Obj C } → Hom C i j → I | |
268 -- hom← : {i j : Obj C } → ( f : I ) → Hom C i j | |
269 -- hom-iso : {i j : Obj C } → { f : Hom C i j } → C [ hom← ( hom→ f ) ≈ f ] | |
270 -- hom-rev : {i j : Obj C } → { f : I } → hom→ ( hom← {i} {j} f ) ≡ f | |
271 -- ≡←≈ : {i j : Obj C } → { f g : Hom C i j } → C [ f ≈ g ] → f ≡ g | |
507 | 272 |
606 | 273 ΓObj : { c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I : Set c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} )) |
538 | 274 (i : Obj C ) → Set c₁ |
275 ΓObj s Γ i = FObj Γ i | |
507 | 276 |
606 | 277 ΓMap : { c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I : Set c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} )) |
278 {i j : Obj C } → ( f : I ) → ΓObj s Γ i → ΓObj s Γ j | |
279 ΓMap s Γ {i} {j} f = FMap Γ ( hom← s f ) | |
598 | 280 |
606 | 281 record snat { c₂ } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) |
605
af321e38ecee
another snat-cong approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
604
diff
changeset
|
282 ( smap : { i j : OC } → (f : I ) → sobj i → sobj j ) : Set c₂ where |
606 | 283 field |
284 snmap : ( i : OC ) → sobj i | |
285 sncommute : ( i j : OC ) → ( f : I ) → smap f ( snmap i ) ≡ snmap j | |
598 | 286 |
604 | 287 open snat |
600
3e2ef72d8d2f
Set Completeness unfinished
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
599
diff
changeset
|
288 |
608 | 289 open import Relation.Binary.HeterogeneousEquality as HE renaming ( cong to cong' ; sym to sym' ; subst₂ to subst₂' ; Extensionality to Extensionality' ) |
668 | 290 using (_≅_;refl; ≡-to-≅) |
669 | 291 -- why we cannot use Extensionality' ? |
292 postulate ≅extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → | |
293 {a : Level } {A : Set a} {B B' : A → Set a} | |
294 {f : (y : A) → B y} {g : (y : A) → B' y} → (∀ y → f y ≅ g y) → ( ( λ y → f y ) ≅ ( λ y → g y )) | |
608 | 295 |
663
855e497a9c8f
introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
608
diff
changeset
|
296 snat-cong : {c : Level} |
855e497a9c8f
introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
608
diff
changeset
|
297 {I OC : Set c} |
855e497a9c8f
introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
608
diff
changeset
|
298 {sobj : OC → Set c} |
855e497a9c8f
introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
608
diff
changeset
|
299 {smap : {i j : OC} → (f : I) → sobj i → sobj j} |
855e497a9c8f
introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
608
diff
changeset
|
300 → (s t : snat sobj smap) |
855e497a9c8f
introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
608
diff
changeset
|
301 → (snmap-≡ : snmap s ≡ snmap t) |
855e497a9c8f
introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
608
diff
changeset
|
302 → (sncommute-≅ : sncommute s ≅ sncommute t) |
855e497a9c8f
introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
608
diff
changeset
|
303 → s ≡ t |
855e497a9c8f
introducd HeterogeneousEquality
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
608
diff
changeset
|
304 snat-cong _ _ refl refl = refl |
590 | 305 |
598 | 306 open import HomReasoning |
307 open NTrans | |
590 | 308 |
606 | 309 Cone : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
310 → NTrans C Sets (K C Sets (snat (ΓObj s Γ) (ΓMap s Γ) ) ) Γ |
604 | 311 Cone C I s Γ = record { |
606 | 312 TMap = λ i → λ sn → snmap sn i |
604 | 313 ; isNTrans = record { commute = comm1 } |
598 | 314 } where |
604 | 315 comm1 : {a b : Obj C} {f : Hom C a b} → |
316 Sets [ Sets [ FMap Γ f o (λ sn → snmap sn a) ] ≈ | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
317 Sets [ (λ sn → (snmap sn b)) o FMap (K C Sets (snat (ΓObj s Γ) (ΓMap s Γ))) f ] ] |
604 | 318 comm1 {a} {b} {f} = extensionality Sets ( λ sn → begin |
319 FMap Γ f (snmap sn a ) | |
693 | 320 ≡⟨ ≡cong ( λ f → ( FMap Γ f (snmap sn a ))) (sym ( ≡←≈ s ( hom-iso s ))) ⟩ |
604 | 321 FMap Γ ( hom← s ( hom→ s f)) (snmap sn a ) |
596 | 322 ≡⟨⟩ |
606 | 323 ΓMap s Γ (hom→ s f) (snmap sn a ) |
324 ≡⟨ sncommute sn a b (hom→ s f) ⟩ | |
604 | 325 snmap sn b |
596 | 326 ∎ ) where |
590 | 327 open import Relation.Binary.PropositionalEquality |
328 open ≡-Reasoning | |
329 | |
330 | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
331 SetsLimit : { c₁ c₂ ℓ : Level} ( I : Set c₁ ) ( C : Category c₁ c₂ ℓ ) ( small : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
332 → Limit C Sets Γ |
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
333 SetsLimit {c₁} I C s Γ = record { |
606 | 334 a0 = snat (ΓObj s Γ) (ΓMap s Γ) |
604 | 335 ; t0 = Cone C I s Γ |
598 | 336 ; isLimit = record { |
604 | 337 limit = limit1 |
338 ; t0f=t = λ {a t i } → t0f=t {a} {t} {i} | |
339 ; limit-uniqueness = λ {a t i } → limit-uniqueness {a} {t} {i} | |
598 | 340 } |
341 } where | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
342 comm2 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K C Sets a) Γ) (f : I) |
605
af321e38ecee
another snat-cong approach
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
604
diff
changeset
|
343 → ΓMap s Γ f (TMap t i x) ≡ TMap t j x |
664 | 344 comm2 {a} {x} t f = ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) ) |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
345 limit1 : (a : Obj Sets) → NTrans C Sets (K C Sets a) Γ → Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ)) |
604 | 346 limit1 a t = λ x → record { snmap = λ i → ( TMap t i ) x ; |
606 | 347 sncommute = λ i j f → comm2 t f } |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
348 t0f=t : {a : Obj Sets} {t : NTrans C Sets (K C Sets a) Γ} {i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o limit1 a t ] ≈ TMap t i ] |
604 | 349 t0f=t {a} {t} {i} = extensionality Sets ( λ x → begin |
350 ( Sets [ TMap (Cone C I s Γ) i o limit1 a t ]) x | |
351 ≡⟨⟩ | |
352 TMap t i x | |
353 ∎ ) where | |
562 | 354 open import Relation.Binary.PropositionalEquality |
355 open ≡-Reasoning | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
356 limit-uniqueness : {a : Obj Sets} {t : NTrans C Sets (K C Sets a) Γ} {f : Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ))} → |
604 | 357 ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] |
358 limit-uniqueness {a} {t} {f} cif=t = extensionality Sets ( λ x → begin | |
598 | 359 limit1 a t x |
604 | 360 ≡⟨⟩ |
606 | 361 record { snmap = λ i → ( TMap t i ) x ; sncommute = λ i j f → comm2 t f } |
668 | 362 ≡⟨ snat-cong (limit1 a t x) (f x ) ( extensionality Sets ( λ i → eq1 x i )) (eq5 x ) ⟩ |
664 | 363 record { snmap = λ i → snmap (f x ) i ; sncommute = λ i j g → sncommute (f x ) i j g } |
604 | 364 ≡⟨⟩ |
598 | 365 f x |
604 | 366 ∎ ) where |
598 | 367 open import Relation.Binary.PropositionalEquality |
368 open ≡-Reasoning | |
604 | 369 eq1 : (x : a ) (i : Obj C) → TMap t i x ≡ snmap (f x) i |
370 eq1 x i = sym ( ≡cong ( λ f → f x ) cif=t ) | |
669 | 371 eq2 : (x : a ) (i j : Obj C) (k : I) → ΓMap s Γ k (TMap t i x) ≡ TMap t j x |
665 | 372 eq2 x i j f = ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) ) |
373 eq3 : (x : a ) (i j : Obj C) (k : I) → ΓMap s Γ k (snmap (f x) i) ≡ snmap (f x) j | |
374 eq3 x i j k = sncommute (f x ) i j k | |
668 | 375 irr≅ : { c₂ : Level} {d e : Set c₂ } { x1 y1 : d } { x2 y2 : e } |
669 | 376 ( ee : x1 ≅ x2 ) ( ee' : y1 ≅ y2 ) ( eq : x1 ≡ y1 ) ( eq' : x2 ≡ y2 ) → eq ≅ eq' |
668 | 377 irr≅ refl refl refl refl = refl |
665 | 378 eq4 : ( x : a) ( i j : Obj C ) ( g : I ) |
379 → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } ) ≅ sncommute (f x) i j g | |
668 | 380 eq4 x i j g = irr≅ (≡-to-≅ (≡cong ( λ h → ΓMap s Γ g h ) (eq1 x i))) (≡-to-≅ (eq1 x j )) (eq2 x i j g ) (eq3 x i j g ) |
381 eq5 : ( x : a) | |
666 | 382 → ( λ i j g → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } )) |
383 ≅ ( λ i j g → sncommute (f x) i j g ) | |
669 | 384 eq5 x = ≅extensionality (Sets {c₁} ) ( λ i → |
385 ≅extensionality (Sets {c₁} ) ( λ j → | |
386 ≅extensionality (Sets {c₁} ) ( λ g → eq4 x i j g ) ) ) | |
387 | |
388 open Limit | |
389 open IsLimit | |
672 | 390 open IProduct |
669 | 391 |
392 SetsCompleteness : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( small : Small C I ) → Complete (Sets {c₁}) C | |
393 SetsCompleteness {c₁} {c₂} C I s = record { | |
691
917e51be9bbf
change argument of Limit and K
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
681
diff
changeset
|
394 climit = λ Γ → SetsLimit {c₁} I C s Γ |
672 | 395 ; cequalizer = λ {a} {b} f g → record { equalizer-c = sequ a b f g ; |
396 equalizer = ( λ e → equ e ) ; | |
397 isEqualizer = SetsIsEqualizer a b f g } | |
398 ; cproduct = λ J fi → SetsIProduct J fi | |
669 | 399 } where |