Mercurial > hg > Members > kono > Proof > category
comparison epi.agda @ 776:5a3ca9509fbf
add epi
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 25 Sep 2018 18:06:14 +0900 |
parents | |
children | 5160b431f1de |
comparison
equal
deleted
inserted
replaced
775:06a7831cf6ce | 776:5a3ca9509fbf |
---|---|
1 open import Category -- https://github.com/konn/category-agda | |
2 open import Level | |
3 | |
4 module epi where | |
5 | |
6 open import Relation.Binary.Core | |
7 | |
8 data FourObject : Set where | |
9 ta : FourObject | |
10 tb : FourObject | |
11 tc : FourObject | |
12 td : FourObject | |
13 | |
14 data FourHom : FourObject → FourObject → Set where | |
15 id-ta : FourHom ta ta | |
16 id-tb : FourHom tb tb | |
17 id-tc : FourHom tc tc | |
18 id-td : FourHom td td | |
19 arrow-ca : FourHom tc ta | |
20 arrow-ab : FourHom ta tb | |
21 arrow-bd : FourHom tb td | |
22 arrow-cb : FourHom tc tb | |
23 arrow-ad : FourHom ta td | |
24 arrow-cd : FourHom tc td | |
25 | |
26 | |
27 _×_ : {a b c : FourObject } → FourHom b c → FourHom a b → FourHom a c | |
28 _×_ {x} {ta} {ta} id-ta y = y | |
29 _×_ {x} {tb} {tb} id-tb y = y | |
30 _×_ {x} {tc} {tc} id-tc y = y | |
31 _×_ {x} {td} {td} id-td y = y | |
32 _×_ {ta} {ta} {x} y id-ta = y | |
33 _×_ {tb} {tb} {x} y id-tb = y | |
34 _×_ {tc} {tc} {x} y id-tc = y | |
35 _×_ {td} {td} {x} y id-td = y | |
36 _×_ {tc} {ta} {tb} arrow-ab arrow-ca = arrow-cb | |
37 _×_ {ta} {tb} {td} arrow-bd arrow-ab = arrow-ad | |
38 _×_ {tc} {tb} {td} arrow-bd arrow-cb = arrow-cd | |
39 _×_ {tc} {ta} {td} arrow-ad arrow-ca = arrow-cd | |
40 _×_ {tc} {ta} {tc} () arrow-ca | |
41 _×_ {ta} {tb} {ta} () arrow-ab | |
42 _×_ {tc} {tb} {ta} () arrow-cb | |
43 _×_ {ta} {tb} {tc} () arrow-ab | |
44 _×_ {tc} {tb} {tc} () arrow-cb | |
45 _×_ {tb} {td} {ta} () arrow-bd | |
46 _×_ {ta} {td} {ta} () arrow-ad | |
47 _×_ {tc} {td} {ta} () arrow-cd | |
48 _×_ {tb} {td} {tb} () arrow-bd | |
49 _×_ {ta} {td} {tb} () arrow-ad | |
50 _×_ {tc} {td} {tb} () arrow-cd | |
51 _×_ {tb} {td} {tc} () arrow-bd | |
52 _×_ {ta} {td} {tc} () arrow-ad | |
53 _×_ {tc} {td} {tc} () arrow-cd | |
54 | |
55 open FourHom | |
56 | |
57 | |
58 assoc-× : {a b c d : FourObject } | |
59 {f : (FourHom c d )} → {g : (FourHom b c )} → {h : (FourHom a b )} → | |
60 ( f × (g × h)) ≡ ((f × g) × h ) | |
61 assoc-× {_} {_} {_} {_} {id-ta} {y} {z} = refl | |
62 assoc-× {_} {_} {_} {_} {id-tb} {y} {z} = refl | |
63 assoc-× {_} {_} {_} {_} {id-tc} {y} {z} = refl | |
64 assoc-× {_} {_} {_} {_} {id-td} {y} {z} = refl | |
65 assoc-× {_} {_} {_} {_} {arrow-ca} {id-tc} {z} = refl | |
66 assoc-× {_} {_} {_} {_} {arrow-ab} {id-ta} {z} = refl | |
67 assoc-× {_} {_} {_} {_} {arrow-ab} {arrow-ca} {id-tc} = refl | |
68 assoc-× {_} {_} {_} {_} {arrow-bd} {id-tb} {z} = refl | |
69 assoc-× {_} {_} {_} {_} {arrow-bd} {arrow-ab} {id-ta} = refl | |
70 assoc-× {_} {_} {_} {_} {arrow-bd} {arrow-ab} {arrow-ca} = refl | |
71 assoc-× {_} {_} {_} {_} {arrow-bd} {arrow-cb} {id-tc} = refl | |
72 assoc-× {_} {_} {_} {_} {arrow-cb} {id-tc} {z} = refl | |
73 assoc-× {_} {_} {_} {_} {arrow-ad} {id-ta} {z} = refl | |
74 assoc-× {_} {_} {_} {_} {arrow-ad} {arrow-ca} {id-tc} = refl | |
75 assoc-× {_} {_} {_} {_} {arrow-cd} {id-tc} {id-tc} = refl | |
76 | |
77 FourId : (a : FourObject ) → (FourHom a a ) | |
78 FourId ta = id-ta | |
79 FourId tb = id-tb | |
80 FourId tc = id-tc | |
81 FourId td = id-td | |
82 | |
83 open import Relation.Binary.PropositionalEquality | |
84 | |
85 FourCat : Category zero zero zero | |
86 FourCat = record { | |
87 Obj = FourObject ; | |
88 Hom = λ a b → FourHom a b ; | |
89 _o_ = λ{a} {b} {c} x y → _×_ x y ; | |
90 _≈_ = λ x y → x ≡ y ; | |
91 Id = λ{a} → FourId a ; | |
92 isCategory = record { | |
93 isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ{a b f} → identityL {a} {b} {f} ; | |
94 identityR = λ{a b f} → identityR {a} {b} {f} ; | |
95 o-resp-≈ = λ{a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; | |
96 associative = λ{a b c d f g h } → assoc-× {a} {b} {c} {d} {f} {g} {h} | |
97 } | |
98 } where | |
99 identityL : {A B : FourObject } {f : ( FourHom A B) } → ((FourId B) × f) ≡ f | |
100 identityL {ta} {ta} {id-ta} = refl | |
101 identityL {tb} {tb} {id-tb} = refl | |
102 identityL {tc} {tc} {id-tc} = refl | |
103 identityL {td} {td} {id-td} = refl | |
104 identityL {tc} {ta} {arrow-ca} = refl | |
105 identityL {ta} {tb} {arrow-ab} = refl | |
106 identityL {tb} {td} {arrow-bd} = refl | |
107 identityL {tc} {tb} {arrow-cb} = refl | |
108 identityL {ta} {td} {arrow-ad} = refl | |
109 identityL {tc} {td} {arrow-cd} = refl | |
110 identityR : {A B : FourObject } {f : ( FourHom A B) } → ( f × FourId A ) ≡ f | |
111 identityR {ta} {ta} {id-ta} = refl | |
112 identityR {tb} {tb} {id-tb} = refl | |
113 identityR {tc} {tc} {id-tc} = refl | |
114 identityR {td} {td} {id-td} = refl | |
115 identityR {tc} {ta} {arrow-ca} = refl | |
116 identityR {ta} {tb} {arrow-ab} = refl | |
117 identityR {tb} {td} {arrow-bd} = refl | |
118 identityR {tc} {tb} {arrow-cb} = refl | |
119 identityR {ta} {td} {arrow-ad} = refl | |
120 identityR {tc} {td} {arrow-cd} = refl | |
121 o-resp-≈ : {A B C : FourObject } {f g : ( FourHom A B)} {h i : ( FourHom B C)} → | |
122 f ≡ g → h ≡ i → ( h × f ) ≡ ( i × g ) | |
123 o-resp-≈ {a} {b} {c} {f} {x} {h} {y} refl refl = refl | |
124 | |
125 epi : {a b c : FourObject } {f₁ f₂ : Hom FourCat a b } { h : Hom FourCat b c } | |
126 → FourCat [ h o f₁ ] ≡ FourCat [ h o f₂ ] → f₁ ≡ f₂ | |
127 epi {ta} {ta} {c} {id-ta} {id-ta} {h} refl = refl | |
128 epi {tb} {tb} {c} {id-tb} {id-tb} {h} refl = refl | |
129 epi {tc} {tc} {c} {id-tc} {id-tc} {h} refl = refl | |
130 epi {td} {td} {c} {id-td} {id-td} {h} refl = refl | |
131 epi {tc} {ta} {c} {arrow-ca} {arrow-ca} {h} refl = refl | |
132 epi {ta} {tb} {c} {arrow-ab} {arrow-ab} {h} refl = refl | |
133 epi {tb} {td} {c} {arrow-bd} {arrow-bd} {h} refl = refl | |
134 epi {tc} {tb} {c} {arrow-cb} {arrow-cb} {h} refl = refl | |
135 epi {ta} {td} {c} {arrow-ad} {arrow-ad} {h} refl = refl | |
136 epi {tc} {td} {c} {arrow-cd} {arrow-cd} {h} refl = refl | |
137 | |
138 monic : {a b c : FourObject } {g₁ g₂ : Hom FourCat b c } { h : Hom FourCat a b } | |
139 → FourCat [ g₁ o h ] ≡ FourCat [ g₂ o h ] → g₁ ≡ g₂ | |
140 monic {a} {ta} {ta} {id-ta} {id-ta} {h} refl = refl | |
141 monic {a} {tb} {tb} {id-tb} {id-tb} {h} refl = refl | |
142 monic {a} {tc} {tc} {id-tc} {id-tc} {h} refl = refl | |
143 monic {a} {td} {td} {id-td} {id-td} {h} refl = refl | |
144 monic {a} {tc} {ta} {arrow-ca} {arrow-ca} {h} refl = refl | |
145 monic {a} {ta} {tb} {arrow-ab} {arrow-ab} {h} refl = refl | |
146 monic {a} {tb} {td} {arrow-bd} {arrow-bd} {h} refl = refl | |
147 monic {a} {tc} {tb} {arrow-cb} {arrow-cb} {h} refl = refl | |
148 monic {a} {ta} {td} {arrow-ad} {arrow-ad} {h} refl = refl | |
149 monic {a} {tc} {td} {arrow-cd} {arrow-cd} {h} refl = refl | |
150 | |
151 open import cat-utility | |
152 open import Relation.Nullary | |
153 open import Data.Empty | |
154 | |
155 record Rev {a b : FourObject } (f : Hom FourCat a b ) : Set where | |
156 field | |
157 rev : Hom FourCat b a | |
158 eq : FourCat [ f o rev ] ≡ id1 FourCat b | |
159 | |
160 not-rev : ¬ ( {a b : FourObject } → (f : Hom FourCat a b ) → Rev f ) | |
161 not-rev r = ⊥-elim ( lemma1 arrow-ab (Rev.rev (r arrow-ab)) (Rev.eq (r arrow-ab)) ) | |
162 where | |
163 lemma1 : (f : Hom FourCat ta tb ) → (e₁ : Hom FourCat tb ta ) | |
164 → ( FourCat [ f o e₁ ] ≡ id1 FourCat tb ) → ⊥ | |
165 lemma1 _ () eq |