Mercurial > hg > Members > kono > Proof > category
diff epi.agda @ 776:5a3ca9509fbf
add epi
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 25 Sep 2018 18:06:14 +0900 |
parents | |
children | 5160b431f1de |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/epi.agda Tue Sep 25 18:06:14 2018 +0900 @@ -0,0 +1,165 @@ +open import Category -- https://github.com/konn/category-agda +open import Level + +module epi where + +open import Relation.Binary.Core + +data FourObject : Set where + ta : FourObject + tb : FourObject + tc : FourObject + td : FourObject + +data FourHom : FourObject → FourObject → Set where + id-ta : FourHom ta ta + id-tb : FourHom tb tb + id-tc : FourHom tc tc + id-td : FourHom td td + arrow-ca : FourHom tc ta + arrow-ab : FourHom ta tb + arrow-bd : FourHom tb td + arrow-cb : FourHom tc tb + arrow-ad : FourHom ta td + arrow-cd : FourHom tc td + + +_×_ : {a b c : FourObject } → FourHom b c → FourHom a b → FourHom a c +_×_ {x} {ta} {ta} id-ta y = y +_×_ {x} {tb} {tb} id-tb y = y +_×_ {x} {tc} {tc} id-tc y = y +_×_ {x} {td} {td} id-td y = y +_×_ {ta} {ta} {x} y id-ta = y +_×_ {tb} {tb} {x} y id-tb = y +_×_ {tc} {tc} {x} y id-tc = y +_×_ {td} {td} {x} y id-td = y +_×_ {tc} {ta} {tb} arrow-ab arrow-ca = arrow-cb +_×_ {ta} {tb} {td} arrow-bd arrow-ab = arrow-ad +_×_ {tc} {tb} {td} arrow-bd arrow-cb = arrow-cd +_×_ {tc} {ta} {td} arrow-ad arrow-ca = arrow-cd +_×_ {tc} {ta} {tc} () arrow-ca +_×_ {ta} {tb} {ta} () arrow-ab +_×_ {tc} {tb} {ta} () arrow-cb +_×_ {ta} {tb} {tc} () arrow-ab +_×_ {tc} {tb} {tc} () arrow-cb +_×_ {tb} {td} {ta} () arrow-bd +_×_ {ta} {td} {ta} () arrow-ad +_×_ {tc} {td} {ta} () arrow-cd +_×_ {tb} {td} {tb} () arrow-bd +_×_ {ta} {td} {tb} () arrow-ad +_×_ {tc} {td} {tb} () arrow-cd +_×_ {tb} {td} {tc} () arrow-bd +_×_ {ta} {td} {tc} () arrow-ad +_×_ {tc} {td} {tc} () arrow-cd + +open FourHom + + +assoc-× : {a b c d : FourObject } + {f : (FourHom c d )} → {g : (FourHom b c )} → {h : (FourHom a b )} → + ( f × (g × h)) ≡ ((f × g) × h ) +assoc-× {_} {_} {_} {_} {id-ta} {y} {z} = refl +assoc-× {_} {_} {_} {_} {id-tb} {y} {z} = refl +assoc-× {_} {_} {_} {_} {id-tc} {y} {z} = refl +assoc-× {_} {_} {_} {_} {id-td} {y} {z} = refl +assoc-× {_} {_} {_} {_} {arrow-ca} {id-tc} {z} = refl +assoc-× {_} {_} {_} {_} {arrow-ab} {id-ta} {z} = refl +assoc-× {_} {_} {_} {_} {arrow-ab} {arrow-ca} {id-tc} = refl +assoc-× {_} {_} {_} {_} {arrow-bd} {id-tb} {z} = refl +assoc-× {_} {_} {_} {_} {arrow-bd} {arrow-ab} {id-ta} = refl +assoc-× {_} {_} {_} {_} {arrow-bd} {arrow-ab} {arrow-ca} = refl +assoc-× {_} {_} {_} {_} {arrow-bd} {arrow-cb} {id-tc} = refl +assoc-× {_} {_} {_} {_} {arrow-cb} {id-tc} {z} = refl +assoc-× {_} {_} {_} {_} {arrow-ad} {id-ta} {z} = refl +assoc-× {_} {_} {_} {_} {arrow-ad} {arrow-ca} {id-tc} = refl +assoc-× {_} {_} {_} {_} {arrow-cd} {id-tc} {id-tc} = refl + +FourId : (a : FourObject ) → (FourHom a a ) +FourId ta = id-ta +FourId tb = id-tb +FourId tc = id-tc +FourId td = id-td + +open import Relation.Binary.PropositionalEquality + +FourCat : Category zero zero zero +FourCat = record { + Obj = FourObject ; + Hom = λ a b → FourHom a b ; + _o_ = λ{a} {b} {c} x y → _×_ x y ; + _≈_ = λ x y → x ≡ y ; + Id = λ{a} → FourId a ; + isCategory = record { + isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ{a b f} → identityL {a} {b} {f} ; + identityR = λ{a b f} → identityR {a} {b} {f} ; + o-resp-≈ = λ{a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; + associative = λ{a b c d f g h } → assoc-× {a} {b} {c} {d} {f} {g} {h} + } + } where + identityL : {A B : FourObject } {f : ( FourHom A B) } → ((FourId B) × f) ≡ f + identityL {ta} {ta} {id-ta} = refl + identityL {tb} {tb} {id-tb} = refl + identityL {tc} {tc} {id-tc} = refl + identityL {td} {td} {id-td} = refl + identityL {tc} {ta} {arrow-ca} = refl + identityL {ta} {tb} {arrow-ab} = refl + identityL {tb} {td} {arrow-bd} = refl + identityL {tc} {tb} {arrow-cb} = refl + identityL {ta} {td} {arrow-ad} = refl + identityL {tc} {td} {arrow-cd} = refl + identityR : {A B : FourObject } {f : ( FourHom A B) } → ( f × FourId A ) ≡ f + identityR {ta} {ta} {id-ta} = refl + identityR {tb} {tb} {id-tb} = refl + identityR {tc} {tc} {id-tc} = refl + identityR {td} {td} {id-td} = refl + identityR {tc} {ta} {arrow-ca} = refl + identityR {ta} {tb} {arrow-ab} = refl + identityR {tb} {td} {arrow-bd} = refl + identityR {tc} {tb} {arrow-cb} = refl + identityR {ta} {td} {arrow-ad} = refl + identityR {tc} {td} {arrow-cd} = refl + o-resp-≈ : {A B C : FourObject } {f g : ( FourHom A B)} {h i : ( FourHom B C)} → + f ≡ g → h ≡ i → ( h × f ) ≡ ( i × g ) + o-resp-≈ {a} {b} {c} {f} {x} {h} {y} refl refl = refl + +epi : {a b c : FourObject } {f₁ f₂ : Hom FourCat a b } { h : Hom FourCat b c } + → FourCat [ h o f₁ ] ≡ FourCat [ h o f₂ ] → f₁ ≡ f₂ +epi {ta} {ta} {c} {id-ta} {id-ta} {h} refl = refl +epi {tb} {tb} {c} {id-tb} {id-tb} {h} refl = refl +epi {tc} {tc} {c} {id-tc} {id-tc} {h} refl = refl +epi {td} {td} {c} {id-td} {id-td} {h} refl = refl +epi {tc} {ta} {c} {arrow-ca} {arrow-ca} {h} refl = refl +epi {ta} {tb} {c} {arrow-ab} {arrow-ab} {h} refl = refl +epi {tb} {td} {c} {arrow-bd} {arrow-bd} {h} refl = refl +epi {tc} {tb} {c} {arrow-cb} {arrow-cb} {h} refl = refl +epi {ta} {td} {c} {arrow-ad} {arrow-ad} {h} refl = refl +epi {tc} {td} {c} {arrow-cd} {arrow-cd} {h} refl = refl + +monic : {a b c : FourObject } {g₁ g₂ : Hom FourCat b c } { h : Hom FourCat a b } + → FourCat [ g₁ o h ] ≡ FourCat [ g₂ o h ] → g₁ ≡ g₂ +monic {a} {ta} {ta} {id-ta} {id-ta} {h} refl = refl +monic {a} {tb} {tb} {id-tb} {id-tb} {h} refl = refl +monic {a} {tc} {tc} {id-tc} {id-tc} {h} refl = refl +monic {a} {td} {td} {id-td} {id-td} {h} refl = refl +monic {a} {tc} {ta} {arrow-ca} {arrow-ca} {h} refl = refl +monic {a} {ta} {tb} {arrow-ab} {arrow-ab} {h} refl = refl +monic {a} {tb} {td} {arrow-bd} {arrow-bd} {h} refl = refl +monic {a} {tc} {tb} {arrow-cb} {arrow-cb} {h} refl = refl +monic {a} {ta} {td} {arrow-ad} {arrow-ad} {h} refl = refl +monic {a} {tc} {td} {arrow-cd} {arrow-cd} {h} refl = refl + +open import cat-utility +open import Relation.Nullary +open import Data.Empty + +record Rev {a b : FourObject } (f : Hom FourCat a b ) : Set where + field + rev : Hom FourCat b a + eq : FourCat [ f o rev ] ≡ id1 FourCat b + +not-rev : ¬ ( {a b : FourObject } → (f : Hom FourCat a b ) → Rev f ) +not-rev r = ⊥-elim ( lemma1 arrow-ab (Rev.rev (r arrow-ab)) (Rev.eq (r arrow-ab)) ) + where + lemma1 : (f : Hom FourCat ta tb ) → (e₁ : Hom FourCat tb ta ) + → ( FourCat [ f o e₁ ] ≡ id1 FourCat tb ) → ⊥ + lemma1 _ () eq