Mercurial > hg > Members > kono > Proof > category
changeset 429:02eefa110eae
nat commute in limit-to
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 26 Mar 2016 15:09:19 +0900 |
parents | 7f8b9f1f1bba |
children | 46c057cb3d82 |
files | limit-to.agda |
diffstat | 1 files changed, 82 insertions(+), 39 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Sat Mar 26 13:50:18 2016 +0900 +++ b/limit-to.agda Sat Mar 26 15:09:19 2016 +0900 @@ -292,6 +292,7 @@ record Nil {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where field nil : {a b : Obj A } -> Hom A a b + nil-id : {a : Obj A } -> A [ nil {a} {a} ≈ id1 A a ] nil-idL : {a b c : Obj A } -> { f : Hom A a b } -> A [ A [ nil {b} {c} o f ] ≈ nil {a} {c} ] nil-idR : {a b c : Obj A } -> { f : Hom A b c } -> A [ A [ f o nil {a} {b} ] ≈ nil {a} {c} ] @@ -328,7 +329,7 @@ ≈-cong {a} {b} {f} {g} (just eq) | just _ | just _ = eq -indexFunctor : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (none : Nil A) ( a b : Obj (MaybeCat A )) ( f g : Hom A a b ) -> Functor (TwoCat {c₁} {c₂} {c₂} ) A +indexFunctor : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (none : Nil A) ( a b : Obj A) ( f g : Hom A a b ) -> Functor (TwoCat {c₁} {c₂} {c₂} ) A indexFunctor {c₁} {c₂} {ℓ} A none a b f g = record { FObj = λ a → fobj a ; FMap = λ {a} {b} f → fmap {a} {b} f @@ -446,61 +447,103 @@ ; uniqueness = λ {d} {h} {fh=gh} {k'} → uniquness d h fh=gh k' } where open ≈-Reasoning A + I : Category c₁ c₂ c₂ I = I' {c₁} {c₂} {ℓ} + Γ : Functor I A Γ = indexFunctor {c₁} {c₂} {ℓ} A none a b f g nmap : (x : Obj I ) ( d : Obj (A) ) (h : Hom A d a ) -> Hom A (FObj (K A I d) x) (FObj Γ x) nmap x d h with x ... | t0 = h ... | t1 = A [ f o h ] - commute1 : {x y : Obj I} {f' : Hom I x y} { ar : Maybe ( Arrow {c₁} {c₂} t0 t1 x y ) } - (d : Obj A) (h : Hom A d a ) -> A [ A [ f o h ] ≈ A [ g o h ] ] + commute1 : {x y : Obj I} {f' : Hom I x y} (d : Obj A) (h : Hom A d a ) -> A [ A [ f o h ] ≈ A [ g o h ] ] → A [ A [ FMap Γ f' o nmap x d h ] ≈ A [ nmap y d h o FMap (K A I d) f' ] ] - commute1 {t0} {t0} {f'} { nothing } d h fh=gh = begin - FMap Γ f' o nmap t0 d h - ≈⟨⟩ - nil {!!} o h - ≈⟨ nil-idL {!!} ⟩ - h - ≈↑⟨ idR ⟩ + commute1 {x} {y} {f'} d h fh=gh with hom f' + commute1 {t0} {t0} {f'} d h fh=gh | nothing = begin + nil none o h + ≈⟨ car ( nil-id none ) ⟩ + id1 A a o h + ≈⟨ idL ⟩ + h + ≈↑⟨ idR ⟩ h o id1 A d - ≈⟨⟩ - nmap t0 d h o id1 A d - ≈⟨⟩ - nmap t0 d h o FMap (K A I d) f' + ∎ + commute1 {t0} {t1} {f'} d h fh=gh | nothing = begin + nil none o h + ≈↑⟨ car ( nil-idL none ) ⟩ + (nil none o f ) o h + ≈⟨ car ( car ( nil-id none ) ) ⟩ + (id1 A b o f ) o h + ≈⟨ car idL ⟩ + f o h + ≈↑⟨ idR ⟩ + (f o h ) o id1 A d + ∎ + commute1 {t1} {t0} {f'} d h fh=gh | nothing = begin + nil none o ( f o h ) + ≈⟨ assoc ⟩ + ( nil none o f ) o h + ≈⟨ car ( nil-idL none ) ⟩ + nil none o h + ≈⟨ car ( nil-id none ) ⟩ + id1 A a o h + ≈⟨ idL ⟩ + h + ≈↑⟨ idR ⟩ + h o id1 A d ∎ - commute1 {t0} {t1} {f'} { nothing } d h fh=gh = {!!} - commute1 {t1} {t0} {f'} { nothing } d h fh=gh = {!!} - commute1 {t1} {t1} {f'} { nothing } d h fh=gh = {!!} - commute1 {t1} {t0} {f'} { just inv-f } d h fh=gh = {!!} - commute1 {t0} {t1} {f'} { just arrow-f } d h fh=gh = begin - FMap Γ f' o nmap t0 d h - ≈⟨⟩ - {!!} o h - ≈⟨ {!!} ⟩ + commute1 {t1} {t1} {f'} d h fh=gh | nothing = begin + nil none o ( f o h ) + ≈⟨ car ( nil-id none ) ⟩ + id1 A b o ( f o h ) + ≈⟨ idL ⟩ f o h - ≈↑⟨ idR ⟩ - ( f o h ) o id1 A d - ≈⟨⟩ - nmap t1 d h o FMap (K A I d) f' + ≈↑⟨ idR ⟩ + ( f o h ) o id1 A d + ∎ + commute1 {t1} {t0} {f'} d h fh=gh | just inv-f = begin + nil none o ( f o h ) + ≈⟨ assoc ⟩ + ( nil none o f ) o h + ≈⟨ car ( nil-idL none ) ⟩ + nil none o h + ≈⟨ car ( nil-id none ) ⟩ + id1 A a o h + ≈⟨ idL ⟩ + h + ≈↑⟨ idR ⟩ + h o id1 A d + ∎ + commute1 {t0} {t1} {f'} d h fh=gh | just arrow-f = begin + f o h + ≈↑⟨ idR ⟩ + (f o h ) o id1 A d ∎ - commute1 {t0} {t1} {f'} { just arrow-g } d h fh=gh = begin - FMap Γ f' o nmap t0 d h - ≈⟨⟩ - ? o h - ≈⟨ {!!} ⟩ + commute1 {t0} {t1} {f'} d h fh=gh | just arrow-g = begin + g o h + ≈↑⟨ fh=gh ⟩ + f o h + ≈↑⟨ idR ⟩ + (f o h ) o id1 A d + ∎ + commute1 {t0} {t0} {f'} d h fh=gh | just id-t0 = begin + id1 A a o h + ≈⟨ idL ⟩ + h + ≈↑⟨ idR ⟩ + h o id1 A d + ∎ + commute1 {t1} {t1} {f'} d h fh=gh | just id-t1 = begin + id1 A b o ( f o h ) + ≈⟨ idL ⟩ f o h - ≈↑⟨ idR ⟩ - ( f o h ) o id1 A d - ≈⟨⟩ - nmap t1 d h o FMap (K A I d) f' + ≈↑⟨ idR ⟩ + ( f o h ) o id1 A d ∎ - commute1 {t0} {t0} {f'} { just id-t0 } d h fh=gh = {!!} - commute1 {t1} {t1} {f'} { just id-t1 } d h fh=gh = {!!} nat1 : (d : Obj A) → (h : Hom A d a ) → A [ A [ f o h ] ≈ A [ g o h ] ] → NTrans I A (K A I d) Γ nat1 d h fh=gh = record { TMap = λ x → nmap x d h ; isNTrans = record { - commute = λ {x} {y} {f'} -> commute1 {x} {y} {f'} { hom f' } d h fh=gh + commute = λ {x} {y} {f'} -> commute1 {x} {y} {f'} d h fh=gh } } k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c