Mercurial > hg > Members > kono > Proof > category
changeset 428:7f8b9f1f1bba
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 26 Mar 2016 13:50:18 +0900 |
parents | 531b739a1d7c |
children | 02eefa110eae |
files | limit-to.agda |
diffstat | 1 files changed, 48 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Sat Mar 26 12:31:14 2016 +0900 +++ b/limit-to.agda Sat Mar 26 13:50:18 2016 +0900 @@ -445,24 +445,66 @@ ; ek=h = λ {d} {h} {fh=gh} → ek=h d h fh=gh ; uniqueness = λ {d} {h} {fh=gh} {k'} → uniquness d h fh=gh k' } where + open ≈-Reasoning A I = I' {c₁} {c₂} {ℓ} Γ = indexFunctor {c₁} {c₂} {ℓ} A none a b f g nmap : (x : Obj I ) ( d : Obj (A) ) (h : Hom A d a ) -> Hom A (FObj (K A I d) x) (FObj Γ x) nmap x d h with x ... | t0 = h ... | t1 = A [ f o h ] - commute1 : {x y : Obj I} {f' : Hom I x y} (d : Obj A) (h : Hom A d a ) -> A [ A [ f o h ] ≈ A [ g o h ] ] + commute1 : {x y : Obj I} {f' : Hom I x y} { ar : Maybe ( Arrow {c₁} {c₂} t0 t1 x y ) } + (d : Obj A) (h : Hom A d a ) -> A [ A [ f o h ] ≈ A [ g o h ] ] → A [ A [ FMap Γ f' o nmap x d h ] ≈ A [ nmap y d h o FMap (K A I d) f' ] ] - commute1 {x} {y} {f'} d h fh=gh = {!!} - nat : (d : Obj A) → (h : Hom A d a ) → A [ A [ f o h ] ≈ A [ g o h ] ] → NTrans I A (K A I d) Γ - nat d h fh=gh = record { + commute1 {t0} {t0} {f'} { nothing } d h fh=gh = begin + FMap Γ f' o nmap t0 d h + ≈⟨⟩ + nil {!!} o h + ≈⟨ nil-idL {!!} ⟩ + h + ≈↑⟨ idR ⟩ + h o id1 A d + ≈⟨⟩ + nmap t0 d h o id1 A d + ≈⟨⟩ + nmap t0 d h o FMap (K A I d) f' + ∎ + commute1 {t0} {t1} {f'} { nothing } d h fh=gh = {!!} + commute1 {t1} {t0} {f'} { nothing } d h fh=gh = {!!} + commute1 {t1} {t1} {f'} { nothing } d h fh=gh = {!!} + commute1 {t1} {t0} {f'} { just inv-f } d h fh=gh = {!!} + commute1 {t0} {t1} {f'} { just arrow-f } d h fh=gh = begin + FMap Γ f' o nmap t0 d h + ≈⟨⟩ + {!!} o h + ≈⟨ {!!} ⟩ + f o h + ≈↑⟨ idR ⟩ + ( f o h ) o id1 A d + ≈⟨⟩ + nmap t1 d h o FMap (K A I d) f' + ∎ + commute1 {t0} {t1} {f'} { just arrow-g } d h fh=gh = begin + FMap Γ f' o nmap t0 d h + ≈⟨⟩ + ? o h + ≈⟨ {!!} ⟩ + f o h + ≈↑⟨ idR ⟩ + ( f o h ) o id1 A d + ≈⟨⟩ + nmap t1 d h o FMap (K A I d) f' + ∎ + commute1 {t0} {t0} {f'} { just id-t0 } d h fh=gh = {!!} + commute1 {t1} {t1} {f'} { just id-t1 } d h fh=gh = {!!} + nat1 : (d : Obj A) → (h : Hom A d a ) → A [ A [ f o h ] ≈ A [ g o h ] ] → NTrans I A (K A I d) Γ + nat1 d h fh=gh = record { TMap = λ x → nmap x d h ; isNTrans = record { - commute = λ {x} {y} {f'} -> commute1 {x} {y} {f'} d h fh=gh + commute = λ {x} {y} {f'} -> commute1 {x} {y} {f'} { hom f' } d h fh=gh } } k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c - k {d} h fh=gh = limit (lim Γ {c} {nat c e fe=ge }) d (nat d h fh=gh ) + k {d} h fh=gh = limit (lim Γ {c} {nat1 c e fe=ge }) d (nat1 d h fh=gh ) ek=h : (d : Obj A ) (h : Hom A d a ) -> ( fh=gh : A [ A [ f o h ] ≈ A [ g o h ] ] ) -> A [ A [ e o k h fh=gh ] ≈ h ] ek=h d h fh=gh = {!!} uniquness : (d : Obj A ) (h : Hom A d a ) -> ( fh=gh : A [ A [ f o h ] ≈ A [ g o h ] ] ) ->