changeset 961:0719e76cd3b8

... locality
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 22 Feb 2021 21:21:30 +0900
parents 062974e39cc7
children 9cf91e773517
files src/equalizer.agda
diffstat 1 files changed, 33 insertions(+), 5 deletions(-) [+]
line wrap: on
line diff
--- a/src/equalizer.agda	Sun Feb 21 21:39:01 2021 +0900
+++ b/src/equalizer.agda	Mon Feb 22 21:21:30 2021 +0900
@@ -332,8 +332,9 @@
 -- Bourroni equations gives an Equalizer
 --
 
-lemma-equ2 : {a b : Obj A} (f g : Hom A a b) → ( bur : Burroni ) → IsEqualizer A {equ bur f g} {a} {b} (α bur f g ) f g 
-lemma-equ2 {a} {b} f g bur = record {
+lemma-equ2 : {a b : Obj A} (f g : Hom A a b) → ( bur : Burroni ) → (≡←≈ : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → f ≡ g )
+    → IsEqualizer A {equ bur f g} {a} {b} (α bur f g ) f g 
+lemma-equ2 {a} {b} f g bur ≡←≈ = record {
       fe=ge = fe=ge1 ;  
       k = k1 ;
       ek=h = λ {d} {h} {eq} → ek=h1 {d} {h} {eq} ;
@@ -362,6 +363,15 @@
              ≈⟨ idR ⟩
                  h 

+
+--         e             f
+--    c  -------→ a ---------→ b
+--    ^        .     ---------→
+--    |      .            g
+--    |k   .
+--    |  . h
+--    d
+
       uniqueness1 : {d : Obj A} →  ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  {k' : Hom A d c } →
               A [ A [ (α bur f g ) o k' ] ≈ h ] → A [ k1 {d} h eq  ≈ k' ]
       uniqueness1 {d} {h} {eq} {k'} ek=h =  
@@ -369,7 +379,7 @@
                 k1 {d} h eq
              ≈⟨⟩
                 γ bur f g h o δ bur (f o h) (g o h) eq
-             ≈⟨ cdr {!!} ⟩
+             ≈⟨ cdr lemma1 ⟩
                 γ bur f g h  o (q o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g )))) 
              ≈⟨ car {!!} ⟩
                 (γ bur f g (α bur f g o k' ) o p ) o (q o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g ))))
@@ -385,12 +395,30 @@
                 k'
              ∎ where
                 open ≈-Reasoning A
+                lemma0 : A [ A [ f o ( α bur f g o k' ) ] ≈ A [ g o ( α bur f g o k' ) ] ]
+                lemma0 = begin  f o ( α bur f g o k' ) ≈⟨ cdr ek=h ⟩ f o h                  ≈⟨ eq ⟩ 
+                                g o h                  ≈↑⟨ cdr ek=h ⟩ 
+                                g o ( α bur f g o k' ) ∎ 
                 p : Hom A (equ bur (f o h) (g o h)) (equ bur (f o ( α bur f g o k'))(g o ( α bur f g o k')))
-                p = γ bur (f o ( α bur f g o k')) (g o ( α bur f g o k')) (id1 A _) o δ bur {!!} {!!} {!!} o {!!}
+                p =  β bur (f o ( α bur f g o k')) (g o ( α bur f g o k')) (α bur (f o h) (g o h)) (f1=g1 lemma0 _)
                 q : Hom A (equ bur (f o ( α bur f g o k'))(g o ( α bur f g o k'))) (equ bur (f o h) (g o h)) 
-                q = γ bur (f o h) (g o h) (id1 A _) o  δ bur {!!} {!!} {!!} o {!!} 
+                q =  β bur (f o h) (g o h)  (α bur (f o ( α bur f g o k')) (g o ( α bur f g o k'))) (f1=g1 eq _)
                 pq=1 : A [ A [ p o q ] ≈ id1 A _ ]
                 pq=1 = {!!}
+                lemma2 : A [ (p o (δ bur (f o h) (g o h) eq )) ≈ δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g )) ]
+                lemma2 = {!!}
+                lemma1 : A [ δ bur (f o h) (g o h) eq ≈ (q o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g )))) ]
+                lemma1 = begin
+                        δ bur (f o h) (g o h) eq
+                     ≈⟨ {!!} ⟩
+                          ((γ bur ( f o h)( g o h)  (α bur (f o (α bur f g o k')) (g o (α bur f g o k')))) 
+                           o δ bur ((f o h) o α bur (f o  ( α bur f g o k') ) (g o  ( α bur f g o k')) )
+                                   ((g o h) o α bur (f o  ( α bur f g o k') ) (g o  ( α bur f g o k')) )
+                               (f1=g1 eq _ ) )
+                               o (δ bur (f o (α bur f g o k')) (g o (α bur f g o k')) (f1=gh (b1 bur f g)))
+                     ≈⟨⟩
+                        q o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g ))) 
+                     ∎ 
 
 
 -- end