changeset 962:9cf91e773517

give up burroni
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 22 Feb 2021 21:31:38 +0900
parents 0719e76cd3b8
children 50d8750d32c0
files src/equalizer.agda
diffstat 1 files changed, 15 insertions(+), 51 deletions(-) [+]
line wrap: on
line diff
--- a/src/equalizer.agda	Mon Feb 22 21:21:30 2021 +0900
+++ b/src/equalizer.agda	Mon Feb 22 21:31:38 2021 +0900
@@ -332,9 +332,8 @@
 -- Bourroni equations gives an Equalizer
 --
 
-lemma-equ2 : {a b : Obj A} (f g : Hom A a b) → ( bur : Burroni ) → (≡←≈ : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → f ≡ g )
-    → IsEqualizer A {equ bur f g} {a} {b} (α bur f g ) f g 
-lemma-equ2 {a} {b} f g bur ≡←≈ = record {
+lemma-equ2 : {a b : Obj A} (f g : Hom A a b) → ( bur : Burroni ) → → IsEqualizer A {equ bur f g} {a} {b} (α bur f g ) f g 
+lemma-equ2 {a} {b} f g bur = record {
       fe=ge = fe=ge1 ;  
       k = k1 ;
       ek=h = λ {d} {h} {eq} → ek=h1 {d} {h} {eq} ;
@@ -372,54 +371,19 @@
 --    |  . h
 --    d
 
-      uniqueness1 : {d : Obj A} →  ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  {k' : Hom A d c } →
-              A [ A [ (α bur f g ) o k' ] ≈ h ] → A [ k1 {d} h eq  ≈ k' ]
-      uniqueness1 {d} {h} {eq} {k'} ek=h =  
-             begin
-                k1 {d} h eq
-             ≈⟨⟩
-                γ bur f g h o δ bur (f o h) (g o h) eq
-             ≈⟨ cdr lemma1 ⟩
-                γ bur f g h  o (q o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g )))) 
-             ≈⟨ car {!!} ⟩
-                (γ bur f g (α bur f g o k' ) o p ) o (q o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g ))))
-             ≈↑⟨ assoc ⟩
-                γ bur f g (α bur f g o k' ) o (p  o (q o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g )))))
-             ≈⟨ cdr assoc ⟩
-                γ bur f g (α bur f g o k' ) o ((p  o q ) o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g ))))
-             ≈⟨ cdr (car pq=1) ⟩
-                γ bur f g (α bur f g o k' ) o (id1 A _ o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g ))))
-             ≈⟨ cdr idL ⟩
-                γ bur f g (α bur f g o k' ) o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g )))
-             ≈⟨ b4 bur f g ⟩
-                k'
-             ∎ where
-                open ≈-Reasoning A
-                lemma0 : A [ A [ f o ( α bur f g o k' ) ] ≈ A [ g o ( α bur f g o k' ) ] ]
-                lemma0 = begin  f o ( α bur f g o k' ) ≈⟨ cdr ek=h ⟩ f o h                  ≈⟨ eq ⟩ 
-                                g o h                  ≈↑⟨ cdr ek=h ⟩ 
-                                g o ( α bur f g o k' ) ∎ 
-                p : Hom A (equ bur (f o h) (g o h)) (equ bur (f o ( α bur f g o k'))(g o ( α bur f g o k')))
-                p =  β bur (f o ( α bur f g o k')) (g o ( α bur f g o k')) (α bur (f o h) (g o h)) (f1=g1 lemma0 _)
-                q : Hom A (equ bur (f o ( α bur f g o k'))(g o ( α bur f g o k'))) (equ bur (f o h) (g o h)) 
-                q =  β bur (f o h) (g o h)  (α bur (f o ( α bur f g o k')) (g o ( α bur f g o k'))) (f1=g1 eq _)
-                pq=1 : A [ A [ p o q ] ≈ id1 A _ ]
-                pq=1 = {!!}
-                lemma2 : A [ (p o (δ bur (f o h) (g o h) eq )) ≈ δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g )) ]
-                lemma2 = {!!}
-                lemma1 : A [ δ bur (f o h) (g o h) eq ≈ (q o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g )))) ]
-                lemma1 = begin
-                        δ bur (f o h) (g o h) eq
-                     ≈⟨ {!!} ⟩
-                          ((γ bur ( f o h)( g o h)  (α bur (f o (α bur f g o k')) (g o (α bur f g o k')))) 
-                           o δ bur ((f o h) o α bur (f o  ( α bur f g o k') ) (g o  ( α bur f g o k')) )
-                                   ((g o h) o α bur (f o  ( α bur f g o k') ) (g o  ( α bur f g o k')) )
-                               (f1=g1 eq _ ) )
-                               o (δ bur (f o (α bur f g o k')) (g o (α bur f g o k')) (f1=gh (b1 bur f g)))
-                     ≈⟨⟩
-                        q o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g ))) 
-                     ∎ 
-
+      postulate 
+              uniqueness1 : {d : Obj A} →  ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  {k' : Hom A d c } →
+                      A [ A [ (α bur f g ) o k' ] ≈ h ] → A [ k1 {d} h eq  ≈ k' ]
+--       uniqueness1 {d} {h} {eq} {k'} ek=h =  
+--              begin
+--                 k1 {d} h eq
+--              ≈⟨⟩
+--                 γ bur f g h o δ bur (f o h) (g o h) eq
+--              ≈⟨ ? ⟩  -- without locality, we cannot simply replace h with (α bur f g o k' 
+--                 γ bur f g (α bur f g o k' ) o (δ bur ( f o ( α bur f g o k' )) ( g o ( α bur f g o k' )) (f1=gh (b1 bur f g )))
+--              ≈⟨ b4 bur f g ⟩
+--                 k'
+--              ∎ 
 
 -- end