Mercurial > hg > Members > kono > Proof > category
changeset 194:3271d2d04b17
F2Nat→Nat2F done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Aug 2013 19:46:40 +0900 |
parents | 4e6f080f0107 |
children | 428d46dfd5aa |
files | yoneda.agda |
diffstat | 1 files changed, 27 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/yoneda.agda Fri Aug 30 16:49:28 2013 +0900 +++ b/yoneda.agda Fri Aug 30 19:46:40 2013 +0900 @@ -239,8 +239,33 @@ Nat2F {a} {F} ha = ( TMap ha a ) (id1 A a) F2Nat→Nat2F : {a : Obj A } → {F : Obj SetsAop} → (fa : FObj F a) → Nat2F {a} {F} (F2Nat {a} {F} fa) ≡ fa -F2Nat→Nat2F = {!!} +-- FMap F (Category.Category.Id A) fa ≡ fa +F2Nat→Nat2F {a} {F} fa = let open ≈-Reasoning (Sets) in cong ( λ f → f fa ) ( + begin + ( FMap F (id1 A _ )) + ≈⟨ IsFunctor.identity (isFunctor F) ⟩ + id1 Sets (FObj F a) + ∎ ) + +open import Relation.Binary.PropositionalEquality + +postulate extensionality2 : Relation.Binary.PropositionalEquality.Extensionality c₁ c₂ +postulate extensionality3 : Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ Nat2F→F2Nat : {a : Obj A } → {F : Obj SetsAop} → (ha : Hom SetsAop (CF {a}) F) → SetsAop [ F2Nat {a} {F} (Nat2F {a} {F} ha) ≈ ha ] -Nat2F→F2Nat = {!!} +-- (λ b g → FMap F g (TMap ha a (Category.Category.Id A))) ≡ TMap ha +Nat2F→F2Nat {a} {F} ha = let open ≡-Reasoning in + begin + ( λ (b : Obj A ) → λ (g : Hom A b a ) → FMap F g (TMap ha a (Category.Category.Id A)) ) + ≡⟨ extensionality2 ( λ b → extensionality3 (λ g → lemma1 {a} {F} ha b g )) ⟩ + TMap ha + ∎ where + lemma1 : {a : Obj A } → {F : Obj SetsAop} → (ha : Hom SetsAop (CF {a}) F) → (b : Obj A ) → (g : Hom A b a ) → + FMap F g (TMap ha a (Category.Category.Id A)) ≡ TMap ha b g + lemma1 {a} {F} ha b g = ? +-- F : op A → Sets +-- ha : NTrans (op A) Sets (CF {a}) F +-- FMap (CF {a}) g o TMap ha a ≈ TMap ha b o FMap F g + +