changeset 195:428d46dfd5aa

Nat2F→F2Nat done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 30 Aug 2013 21:46:18 +0900
parents 3271d2d04b17
children c040369bd6d4
files yoneda.agda
diffstat 1 files changed, 17 insertions(+), 10 deletions(-) [+]
line wrap: on
line diff
--- a/yoneda.agda	Fri Aug 30 19:46:40 2013 +0900
+++ b/yoneda.agda	Fri Aug 30 21:46:18 2013 +0900
@@ -252,20 +252,27 @@
 postulate extensionality2 : Relation.Binary.PropositionalEquality.Extensionality  c₁ c₂ 
 postulate extensionality3 : Relation.Binary.PropositionalEquality.Extensionality  c₂ c₂
 
+--     F :  op A → Sets
+--     ha : NTrans (op A) Sets (CF {a}) F
+--                FMap F  g  o TMap ha a ≈   TMap ha b  o FMap (CF {a}) g
+
 Nat2F→F2Nat : {a : Obj A } → {F : Obj SetsAop} → (ha : Hom SetsAop (CF {a}) F) →  SetsAop [ F2Nat {a} {F} (Nat2F {a} {F} ha) ≈ ha ]
--- (λ b g → FMap F g (TMap ha a (Category.Category.Id A))) ≡ TMap ha
 Nat2F→F2Nat {a} {F} ha = let open ≡-Reasoning in
              begin
                 ( λ (b : Obj A ) → λ (g : Hom A b a ) → FMap F g (TMap ha a (Category.Category.Id A))  )
-             ≡⟨ extensionality2 ( λ b → extensionality3 (λ g → lemma1 {a} {F} ha b g )) ⟩
+             ≡⟨ extensionality2 ( λ b → extensionality3 (λ g → (
+                begin
+                    FMap F g (TMap ha a (Category.Category.Id A)) 
+                ≡⟨  Relation.Binary.PropositionalEquality.cong (λ f → f (Category.Category.Id A)) (IsNTrans.commute (isNTrans ha)) ⟩
+                    TMap ha b (FMap (CF {a}) g (Category.Category.Id A))
+                ≡⟨⟩
+                    TMap ha b ( (A Category.o Category.Category.Id A) g )
+                ≡⟨  Relation.Binary.PropositionalEquality.cong ( TMap ha b ) ( ≈-≡ (IsCategory.identityL  ( Category.isCategory A ))) ⟩
+                    TMap ha b g
+                ∎ 
+             ))) ⟩
                 TMap ha   
-             ∎ where
-               lemma1 :  {a : Obj A } → {F : Obj SetsAop} → (ha : Hom SetsAop (CF {a}) F) →  (b : Obj A ) → (g : Hom A b a ) → 
-                            FMap F g (TMap ha a (Category.Category.Id A)) ≡  TMap ha b g
-               lemma1 {a} {F} ha b g =  ?
-
---     F :  op A → Sets
---     ha : NTrans (op A) Sets (CF {a}) F
---                FMap (CF {a}) g  o TMap ha a ≈   TMap ha b  o FMap F g
+             ∎ 
 
 
+