Mercurial > hg > Members > kono > Proof > category
changeset 196:c040369bd6d4
give up injective on Object?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 31 Aug 2013 01:23:50 +0900 |
parents | 428d46dfd5aa |
children | ec50ff189f62 |
files | yoneda.agda |
diffstat | 1 files changed, 28 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/yoneda.agda Fri Aug 30 21:46:18 2013 +0900 +++ b/yoneda.agda Sat Aug 31 01:23:50 2013 +0900 @@ -171,6 +171,7 @@ identity = identity ; distr = distr1 ; ≈-cong = ≈-cong + } } where ≈-cong : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → SetsAop [ y-nat f ≈ y-nat g ] @@ -274,5 +275,32 @@ TMap ha ∎ +-- Yoneda's Lemma +-- full and faithfull +-- that is FMapp Yoneda is injective and surjective +-- λ b g → (A Category.o f₁) g +YondaLemma1 : {a a' : Obj A } {f : FObj (FObj YonedaFunctor a) a' } → SetsAop [ F2Nat {a'} {FObj YonedaFunctor a} f ≈ FMap YonedaFunctor f ] +YondaLemma1 {a} {a'} {f} = refl +-- F2Nat is bijection so FMap YonedaFunctor also ( using functional extensionality ) + +-- Full embedding requires injective on Object, that is +-- FObj YonedaFunctor a ≡ FObj YonedaFunctor b → a ≡ b + +dom-equivalence : {a b : Obj A} → {f g : Hom A a b} → A [ f ≈ g ] → Category.dom A f ≡ Category.dom A g +dom-equivalence eq = refl + +equive-elm : ∀{n} {a b : Set n} → (f : a ) → a ≡ b → b +equive-elm f refl = f + +equive-arrow : {a b : Obj A } → (f : Hom A a b ) → Hom A a b ≡ Hom A a a → Hom A a a +equive-arrow f eq = equive-elm f eq + +-- equive-hom : {a b : Obj A } → {f : Hom A a b } → Hom A a b ≡ Hom A a a → a ≡ b +-- equive-hom {a} {b} {f} eq = {!!} + +-- YondaLemma2 : {a b : Obj A } → (λ x → FObj (FObj YonedaFunctor a) x) ≡ (λ x → FObj (FObj YonedaFunctor b ) x) → +-- {f : Hom A a b } → a ≡ b +-- YondaLemma2 {a} {b} eq {f} = {!!} eq +