Mercurial > hg > Members > kono > Proof > category
changeset 424:4329525f5085
fix imit-to-edu for MaybeCat / TwoCat
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 24 Mar 2016 14:12:53 +0900 |
parents | b5519e954b57 |
children | 98811e927d4a |
files | limit-to.agda |
diffstat | 1 files changed, 18 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Thu Mar 24 13:44:27 2016 +0900 +++ b/limit-to.agda Thu Mar 24 14:12:53 2016 +0900 @@ -27,6 +27,8 @@ t0 : TwoObject t1 : TwoObject +-- constrainted arrow +-- we need inverse of f to complete cases data Arrow {c₁ c₂ : Level } ( t00 t11 : TwoObject {c₁} ) : TwoObject {c₁} -> TwoObject {c₁} -> Set c₂ where id-t0 : Arrow t00 t11 t00 t00 id-t1 : Arrow t00 t11 t11 t11 @@ -181,7 +183,7 @@ assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | just id-t1 | just id-t1 | just arrow-f = ==refl assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | just id-t1 | just id-t1 | just arrow-g = ==refl assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} {f} {g} {h} | just id-t1 | just id-t1 | just id-t1 = ==refl --- remaining all failure case +-- remaining all failure case (except inf-f case ) assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} {f} {g} {h} | just id-t0 | just id-t0 | nothing = nothing assoc-× {c₁} {c₂} {t1} {t0} {t0} {t0} {f} {g} {h} | just id-t0 | just id-t0 | nothing = nothing assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} {f} {g} {h} | just id-t1 | just id-t1 | nothing = nothing @@ -384,8 +386,14 @@ open Limit -lim-to-equ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) -> - (lim : (I : Category c₁ c₂ ℓ) ( Γ : Functor I A ) → {a0 : Obj A } {u : NTrans I A ( K A I a0 ) Γ } → Limit A I Γ a0 u ) -- completeness +I : {c₁ c₂ ℓ : Level} -> Category c₁ c₂ c₂ +I {c₁} {c₂} {ℓ} = TwoCat {c₁} {c₂} {ℓ} +MA : {c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } -> Category c₁ (ℓ ⊔ c₂) (ℓ ⊔ c₂) +MA {c₁} {c₂} {ℓ} {A} = MaybeCat A + +lim-to-equ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) + (lim : ( Γ : Functor (I {c₁} {c₂} {ℓ}) (MA {c₁} {c₂} {ℓ} {A}) ) → {a0 : Obj A } + {u : NTrans I MA ( K MA I a0 ) Γ } → Limit MA I Γ a0 u ) -- completeness → {a b c : Obj A} (f g : Hom A a b ) → (e : Hom A c a ) → (fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] ) → Equalizer A e f g lim-to-equ {c₁} {c₂} {ℓ } A lim {a} {b} {c} f g e fe=ge = record { @@ -394,14 +402,15 @@ ; ek=h = λ {d} {h} {fh=gh} → ek=h d h fh=gh ; uniqueness = λ {d} {h} {fh=gh} {k'} → uniquness d h fh=gh k' } where - I = TwoCat {c₁} {c₂} {ℓ } - Γ = {!!} - nmap : (x : Obj I) ( d : Obj A ) (h : Hom A d a ) -> Hom A (FObj (K A I d) x) (FObj Γ x) + mf = record { hom = just f } + mg = record { hom = just g } + Γ = indexFunctor {c₁} {c₂} {ℓ} A a b f g + nmap : (x : Obj (I {c₁} {c₂} {ℓ}) ) ( d : Obj (MA {c₁} {c₂} {ℓ} {A}) ) (h : Hom MA d a ) -> Hom MA (FObj (K MA I d) x) (FObj Γ x) nmap x d h = {!!} - commute1 : {x y : Obj I} {f' : Hom I x y} (d : Obj A) (h : Hom A d a ) -> A [ A [ f o h ] ≈ A [ g o h ] ] - → A [ A [ FMap Γ f' o nmap x d h ] ≈ A [ nmap y d h o FMap (K A I d) f' ] ] + commute1 : {x y : Obj I} {f' : Hom I x y} (d : Obj MA) (h : Hom MA d a ) -> MA [ MA [ mf o h ] ≈ MA [ mg o h ] ] + → MA [ MA [ FMap Γ f' o nmap x d h ] ≈ MA [ nmap y d h o FMap (K MA I d) f' ] ] commute1 {x} {y} {f'} d h fh=gh = {!!} - nat : (d : Obj A) → (h : Hom A d a ) → A [ A [ f o h ] ≈ A [ g o h ] ] → NTrans I A (K A I d) Γ + nat : (d : Obj MA) → (h : Hom MA d a ) → MA [ MA [ mf o h ] ≈ MA [ mg o h ] ] → NTrans I MA (K MA I d) Γ nat d h fh=gh = record { TMap = λ x → nmap x d h ; isNTrans = record {